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Abstract—Uncrewed Aerial Vehicles (UAVs) are increasingly
employed for deforestation monitoring due to their flexibility,
cost-effectiveness, and high-resolution sensing capabilities. How-
ever, their performance is highly susceptible to adverse weather
conditions such as rainfall and wind, which significantly reduce
flight endurance and detection accuracy. Among various adverse
weather factors, rainfall intensity and wind speed emerge as the
most influential contributors to heavy rainfall conditions, which
represent one of the most critical external risks to UAV opera-
tions. This study presents an integrated methodology combining
Failure Mode and Effects Analysis (FMEA) and Causal Loop
Diagrams (CLDs) to identify weather-induced vulnerabilities and
model their cascading impact on UAV-based monitoring systems.
We extend an existing CLD model by incorporating rainfall
intensity rate and wind speed. Based on the causal relationships
identified, we develop a functional model to quantitatively eval-
uate UAV performance degradation. A numerical experiment is
conducted to evaluate the impact of four representative weather
scenarios: Clear, Light, Moderate, and Severe, on battery life,
detection accuracy, and ultimately, the UAV’s ability to reduce
CO; emissions through timely deforestation detection. Results
show that battery life declines from 120 minutes to 27.3 minutes,
and accuracy drops from 95% to 78.8% as weather severity
increases. Consequently, annual CQO2 emission reduction falls
from 179.6 tons under clear conditions to just 32.9 tons under
severe conditions. These findings illustrate how environmen-
tal risks propagate through system performance degradation,
reducing environmental effectiveness. The proposed approach
offers a valuable basis for resilience-oriented design and weather-
aware mission planning in UAV-based environmental monitoring
systems.

Index Terms—CLD, Deforestation monitoring, FMEA, UAV,
Weather impacts.

I. INTRODUCTION

Deforestation represents a major environmental challenge,
affecting ecosystems, biodiversity, and climate stability [1].
Effective monitoring is essential to quantify forest loss, assess
its environmental impact, and identify high-risk areas. By
tracking deforestation rates, we can identify areas at risk and
take action to protect forests and wildlife habitats. Addition-
ally, deforestation monitoring provides valuable information
for policymakers to develop effective conservation policies and
mitigate climate change.

Recently, Uncrewed Aerial Vehicles (UAVs) have been
introduced for efficient deforestation monitoring. Conventional
monitoring methods using satellite images often fall short in
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terms of coverage and real-time response capabilities [2]. In
contrast, UAVs can rapidly collect data, survey large areas,
and capture high-resolution imagery, enhancing deforestation
detection and prevention efforts. Compared to conventional
methods, UAVs are also cost-effective and safe [2].

Adverse weather conditions present significant challenges to
UAV-based systems, yet they are often underestimated during
system design. Factors such as heavy rainfall can compromise
reliability, reduce operational efficiency, and impair sensing
accuracy by increasing power consumption, diminishing lift,
destabilizing flight, and obstructing sensors. Among the vari-
ous external risks UAVs face, environmental hazards are par-
ticularly critical due to their unpredictability and widespread
occurrence. [3]. A common question is why UAV operations
are not simply limited to periods of favorable weather, al-
lowing existing algorithms to function without modification.
However, this approach is often impractical, especially in
tropical or high-deforestation regions where adverse weather
is both frequent and prolonged. Furthermore, deforestation
activities tend to continue regardless of weather conditions,
demanding uninterrupted monitoring to enable timely detec-
tion and intervention. These challenges emphasize the need
to assess UAV performance in harsh environmental scenarios
and to design systems capable of sustaining effective operation
despite such disturbances. These challenges underscore the
need to assess UAV performance under adverse environmental
conditions and to design systems capable of maintaining
operational effectiveness despite such disturbances.

This study investigates how adverse weather conditions im-
pact the effectiveness of UAV-based deforestation monitoring
systems. While previous research has explored UAV-based
deforestation monitoring systems, most studies have been lim-
ited in scope [4] [5], addressing operational efficiency under
standard conditions or focusing on isolated environmental
challenges. Existing studies often lack consideration of the
impacts of adverse weather conditions on UAV system perfor-
mance and deforestation monitoring dynamics. To address this
gap, we conduct a systematic impact analysis by leveraging
a Causal Loop Diagram (CLD) [6] and Failure Mode and
Effects Analysis (FMEA) [7]. First, FMEA is conducted to
derive failure modes of system components affected by adverse
weather conditions. For example, the UAV function of ”Object



Detection” experiences the failure mode of ”Sensor Malfunc-
tion,” caused by obstructed vision due to rainfall intensity. This
reduces detection accuracy, increasing the likelihood of missed
deforestation events and compromising the effectiveness of
monitoring activities. Next, we leverage CLDs to capture
the causal relations between the system performance metrics,
such as detection accuracy and battery life, and variables of
adverse weather conditions, such as rainfall intensity and wind
speed. The CLDs can illustrate the dynamic effects of adverse
weather on UAV system performance and their cascading
impact on the effectiveness of deforestation monitoring.

Building on this qualitative analysis, numerical experiments
were conducted to quantify performance degradation under
increasing weather severity. As rainfall and wind intensify,
UAV battery life drops from 120 to 27.3 minutes, while
detection accuracy falls from 95% to 78.8%. These reductions
restrict flight duration and sensing reliability, directly limiting
monitoring coverage and operational effectiveness. As a result,
the potential annual CO5 emission reduction achieved through
UAV-based deforestation monitoring decreases from 179.6 to
32.9 tons. These findings demonstrate how adverse weather
conditions propagate through system-level metrics, ultimately
reducing the environmental benefits of UAV operations.

The rest of the paper is organized as follows. Section II
introduces the concept of CLDs and reviews related work.
Section III explains the motivation for analyzing the impact
of weather on UAV-based monitoring systems. Section IV
presents the case study, including the use of FMEA, CLD
modeling, and a numerical experiment to assess the effects of
adverse weather conditions. Section V concludes the paper.

II. CAUSAL LOOP DIAGRAM
A. Definition

CLD is a systems mapping tool used to illustrate the dy-
namic interactions and feedback loops within a complex sys-
tem. A CLD consists of variables and the causal relationships
between them, represented by arrows. These relationships can
be positive (+), indicating that an increase in one variable
causes an increase in another, or negative (-), indicating an
inverse relationship. Fig. 1 represents a CLD illustrating the
interaction between the birth rate and population size.
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Fig. 1: Relationship between birth rate and population

An increase in population leads to a rise in the number of
births, and more births, in turn, contribute to further growth
in the population. The positive signs indicate a reinforcing
relationship, meaning that changes in one variable positively
influence the other, creating a continuous growth dynamic.

B. CLDs for Environmental Analysis

CLDs are often used in environmental, social, and technical
domains to visualize and analyze systems’ interdependencies
and feedback mechanisms [6]. CLDs help visualize how
different parts of a system interact over time. If one variable
increases, it triggers a chain reaction that further increases that
variable, creating a cycle of growth or decline. The cycle is
often associated with exponential growth or collapse.

CLDs depict how different components interact, aiding in
the understanding of complex systems [8]. For instance, in
[6], the author demonstrated the use of CLDs in participatory
system dynamics modeling by showing how they facilitate
stakeholder engagement and provide insights for designing
effective strategies in environmental monitoring and policy-
making. CLDs have been utilized to map cascading climate
change impacts on bioenergy supply systems, highlighting
feedback mechanisms that intensify supply chain vulnera-
bilities under climate-induced stresses [9]. Similarly, CLDs
have been applied in participatory design and performance
assessment of Nature-Based Solutions (NBS) for water-related
risks, effectively capturing stakeholder inputs to model co-
benefits and trade-offs [10]. Additionally, they have been
utilized to identify synergies and trade-offs within the Water-
Energy-Food Nexus (WEFN), enabling targeted interventions
to address resource scarcity [11]. Such studies highlight the
adaptability of CLDs in tackling complex systemic challenges.

C. CLDs for deforestation monitoring

A study on deforestation drivers in Colombia used CLDs
to map both legal and illegal drivers of deforestation and their
socio-economic effects [12]. The feedback loops identified
in the system revealed how economic incentives could rein-
force deforestation, while governance and community-driven
conservation could create balancing loops to slow down the
process. This systemic perspective provided actionable insights
for designing tailored environmental strategies. Similarly, in
Malaysia, CLDs highlighted the relationship between popula-
tion growth, infrastructure demands, and deforestation, reveal-
ing feedback loops where deforestation exacerbates climate
change risks, such as heavy rainfall and rising sea levels [13].
Besides CLDs were employed within a socio-ICT (Information
and Communication Technology) model for UAV-based de-
forestation monitoring to model relationships between system
metrics (e.g., detection accuracy, service availability) and
key performance indicators like deforestation rates and COq
emissions [14]. The model illustrates the system dynamics
of a UAV-based deforestation monitoring system, highlighting
key variables such as detection accuracy, monitoring area, and
preventive actions. This model provides a systemic view of
deforestation monitoring, emphasizing the interdependencies
among UAV operational metrics and environmental outcomes.
Although primarily focused on essential dynamics, this study
emphasized the potential for incorporating external risk fac-
tors, such as environmental risks, to enhance the model’s
applicability.



Unlike previous studies, which primarily focused on system
dynamics under standard conditions, our research fills this gap
by analyzing the impact of adverse weather conditions as a key
external risk factor to UAV-based deforestation monitoring.

III. IMPACT OF ADVERSE WEATHER CONDITIONS

In real-world forest environments, the performance of UAVs
is frequently affected by adverse weather conditions, including
rainfall, wind, fog, and extreme heat. For instance, heavy
rain can obscure camera vision, while strong winds may
destabilize flight, reducing detection accuracy, and shortening
battery life. These disruptions can result in missed detections
of illegal logging or delayed intervention. Despite these critical
risks, many UAV systems are developed without sufficiently
considering environmental factors. A structured and systematic
approach is therefore essential to evaluate and mitigate the
effects of such conditions, ensuring more dependable and
effective deforestation monitoring.

To address this gap, this study leverages the CLD from
[14] to make a comprehensive analysis of adverse weather im-
pacts on UAV-based deforestation monitoring. While existing
work modeled the essential system dynamics of UAV-based
deforestation monitoring systems, the influence of external
environmental risks have not yet been accounted for. By
extending the CLD to include heavy rainfall as a representative
risk factor, this study aims to explore how weather conditions
propagate through the system and affect key variables such as
detection accuracy, service availability, and preventive actions.
This inclusion not only enhances the realism of the model but
also provides actionable insights into designing UAV systems
capable of maintaining operational effectiveness under adverse
conditions.

IV. IMPACT ANALYSIS
A. Rainfall parameters impacting UAV systems

Several quantitative parameters of heavy rainfall have been
discussed in [15], which collectively characterize the dynamics
of heavy rainfall events. Among these, we have selected rain-
fall intensity rate and wind speed as variables that might have
a significant impact on UAV-based deforestation monitoring
systems.

1) Rainfall intensity rate : Rainfall intensity rate quanti-
fies the instantaneous rate of precipitation, serving as an
indicator of operational challenges during heavy rainfall
events.

2) Wind speed: Wind speed represents the intensity of
atmospheric movement during heavy rainfall, which
directly impacts UAV stability and energy consumption.

B. FMEA for critical failure modes

FMEA [7] is a structured methodology used to identify
potential failure modes within a system, assess their effects,
and prioritize them based on their severity, occurrence, and
detectability. In this study, FMEA was applied to identify the
failure modes resulting from rainfall intensity rate and wind
speed on UAV-based deforestation monitoring systems.

Table I summarizes how rainfall intensity rate and wind
speed affect UAV performance through specific failure modes
associated with five key functions: flight stabilization, object
detection, navigation, service operations, and equipment in-
tegrity. For flight stabilization, heavy rainfall increases power
demands, causing energy drain and reduced battery life. Object
detection suffers from sensor malfunction and data inaccuracy
due to obstructed vision, lowering detection accuracy. Nav-
igation is impacted by positional deviation as wind disrupts
stability and causes flight drift, reducing monitoring precision.
Service operations are delayed by water accumulation and
unsafe wind conditions, limiting UAV availability. Equipment
integrity is compromised through structural damage from
prolonged exposure to rain and wind. In total, six major
failure modes are identified as direct consequences of heavy
rainfall. These disruptions illustrate how multiple subsystems
are simultaneously affected by environmental factors. Through
the FMEA result analysis, we identified the rainfall intensity
rate and wind speed affecting key UAV functions and incorpo-
rated these parameters into the extended CLD to model their
dynamic impacts.

C. CLD for weather impact analysis

Heavy rainfalls significantly degrade the performance of
UAV-based monitoring systems by adversely affecting battery
life and detection accuracy. Considering the failure modes
derived from the FMEA in Table I, we extend the CLD from
[14] with two new variables, rainfall intensity and wind speed
as shown in Fig. 2.
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Fig. 2: Extended CLD for deforestation monitoring solution
in Brazilian Amazon

Fig. 2. represents a causal view of how adverse weather
conditions, specifically rainfall intensity rate and wind speed,
disrupt the functioning of UAV-based deforestation monitoring
systems. These environmental stressors directly reduce battery



TABLE I: FMEA of heavy rainfall impact on UAV systems

Function Failure Mode Cause

Effect

Flight Stabilization Energy drain

Increased power demands for stabilization

Reduced battery life, decreased flight autonomy.

Object Detection Sensor malfunction

era lenses)

Rainfall intensity obstructs vision sensors (cam-

Impaired detection accuracy, missed deforestation events

Data inaccuracy

Reduced visibility due to Rainfall intensity

Reduced precision in deforestation detection

Navigation Positional Erratic movements due to wind speed Navigation errors and compromised monitoring coverage
deviation

Service Operations Delayed Groundwater accumulation and wind speeds hin- | Reduced service availability
takeoff/landing dering UAV operation

Equipment Integrity | Structural damage

Prolonged exposure to water droplets and wind

Reduced system lifespan

life by increasing power demands for flight stabilization and
sensor operation, and they degrade detection accuracy by
causing sensor obstruction and image distortion. As these
core capabilities decline, UAV autonomy is reduced. In this
context, autonomy refers to the total flight duration under
operational conditions. This reduction limits the monitoring
area, which refers to the geographic range the UAV can
cover, and lowers the visiting frequency, meaning how often a
specific location is revisited. Together, these reductions impair
deforestation detection, which is the UAV system’s ability to
identify illegal forest clearing. In turn, this affects the initiation
of preventive actions and overall deforestation prevention,
which reflects the system’s effectiveness in halting forest loss.
A drop in prevention capacity leads to a higher deforestation
rate, contributing to an increased COy gas emission rate due
to diminished carbon absorption.

D. Function definitions

To quantify the effects of adverse weather, we conduct a
numerical experiment where rainfall intensity (R) and wind
speed (W) are modeled as constant external inputs influencing
battery life and detection accuracy. This complements the CLD
by translating qualitative relationships into functional forms
for system-level analysis.

In this study, we focus on two key performance metrics that
determine UAV efficiency and reliability in adverse weather
conditions: Battery life (B) and Detection accuracy (A). Bat-
tery life is defined as the maximum duration (in minutes)
the UAV can operate under given environmental conditions.
We express the UAV’s battery life as a function of rainfall
and windspeed. Adverse weather forces the UAV to expend
more energy to counteract strong winds or overcome raindrop
impact, which significantly reduces the UAV’s battery life. To
capture this effect, we propose a reciprocal formula for battery
life:

Co

BRW) =1 Rt aw M

Where:

o Cy: Ideal battery life in clear weather (R = 0, W = 0)
assumed to be 120 minutes [16].

e «,3: Nonnegative sensitivity coefficients representing
increased energy consumption due to rainfall and wind
speed.

We modeled battery life as a reciprocal function of rainfall
intensity (R) and wind speed (W) to capture the nonlinear
relationship between environmental stressors and energy con-
sumption. As R and W increase, UAVs require increasingly
more power to maintain stability and control, leading to a
sharp reduction in operational duration.

Detection accuracy reflects how reliable the UAV is in
identifying targets under weather interference. Under clear
weather, the UAV’s onboard sensors and algorithms can
achieve a maximum accuracy of 90-99%. However, rainfall
and wind degrade the reliability. Rain can obscure the drone’s
sensors and cameras, making it difficult to collect data ef-
fectively. Winds have the potential to destabilize the UAYV,
causing misalignment or image distortion. We capture these
effects with a linear decrement model (with a floor at 0% to
avoid negative accuracy):

A(R, W) = max (0, Ay — (YR + 6W)) 2)

Where:
e Apnax: Maximum detection accuracy in clear weather
(approximately 99%)

e 7,6: Degradation coefficients for rainfall and wind speed.

We modeled detection accuracy using a linearly decreas-
ing function, as environmental interference, such as sensor
obstruction and flight instability, generally degrades sensing
performance in an approximately proportional manner.

In accordance with the causal relationships illustrated in
the system’s CLD in Fig. 2, UAV autonomy is conceptu-
ally and operationally driven by battery life. Specifically,
rainfall intensity and wind speed contribute to increased en-
ergy consumption, thereby reducing the available battery life,
and, consequently, the effective flight autonomy. To reflect
this relationship, we define UAV battery life B(R,W) as
a function of weather parameters in Exp (1). This battery
life function quantifies how adverse weather variables reduce
operational endurance. Following the directional logic of the
CLD, autonomy tg is modeled as a direct function of battery
life:




tn = k- B(R, W) 3)

Where:
o k: A proportionality constant that maps available battery
life to operational flight time. In most configurations,
k can be assumed as unity (i.e., 1 minute of battery
life enables 1 minute of autonomy), though it may be
adjusted to reflect payload weight or other mission-
specific constraints.

E. Numerical Experiment

Using the formulated static model, we conducted a numer-
ical experiment to evaluate the UAV performance across a
spectrum of constant weather conditions. We sampled rainfall
intensity R from O to 100 mm/h and wind speed W from O to
200 m/s, covering the full range of interest. For each (R, W)
pair, we computed the battery life and detection accuracy. We
analyzed four representative weather conditions, increasing
in severity: clear, light, moderate, and severe, as shown in
Table II.

TABLE II: Weather conditions used in the numerical analysis

Scenario | Rainfall (R) | Wind Speed (W) | Description
Clear 0 mm/h 0 m/s Ideal, calm weather
Light 10 mm/h 10 m/s Slightly breezy & wet
Moderate 50 mm/h 100 m/s Storm-like conditions
Severe 80 mm/h 180 m/s Near-failure, extreme

The parameters used in evaluating UAV performance, in-
cluding environmental sensitivity coefficients and system con-
stants, are summarized in Table III. The minimum acceptable
thresholds used in this study are defined in Table IV.

TABLE III: Parameters used in UAV performance evaluation

Parameter Symbol | Value Description

Battery capacity Co 120 min | Nominal UAV battery life
under clear conditions

Rain sensitivity | « 0.02 Battery drain rate per

factor mm/h of rainfall

Wind sensitivity | 8 0.01 Battery drain rate per m/s

factor of wind speed

Battery-to- k 1.0 Conversion constant from

autonomy ratio battery life to flight au-
tonomy

Scan probability | psca 0.60 Probability UAV can scan

[14] the area during available
time

Service availabil- | psay 0.90 Proportion of time the

ity [14] UAV is operational

Prevention Pdet 0.70 Likelihood of stopping

success rate [14] deforestation after detec-
tion

Emission factor | F 7 10 tons | Total CO2 released per

[14] CO2/ha hectare of deforestation

The numerical experiment evaluates the impact of varying
weather conditions on UAV operational performance, specif-
ically focusing on how rainfall and wind affect battery life

TABLE IV: The minimum acceptable threshold

Metric Threshold Description

Battery Life 20 minutes Minimum flight time re-
quired for mission success

Detection 85% Minimum acceptable ac-

Accuracy curacy for reliable detec-
tion or classification tasks

and detection accuracy. Four representative weather scenarios
are analyzed to quantify performance degradation and its
cascading effects.

Fig. 3 illustrates the UAV battery life as a function of
rainfall and wind. The function assumes battery capacity
decreases with increasing rainfall and wind speed due to higher
aerodynamic drag and sensor processing load. The maximum
endurance under ideal conditions (clear) is set at 120 minutes.
As the environmental severity increases, the flight duration
degrades significantly. Notably, the Moderate condition yields
only 40 minutes, while Severe condition reduces endurance to
27.3 minutes, approaching the critical mission failure threshold
of 20 minutes (shown in a transparent red plane in Fig. 3).
This threshold demarcates the operational boundary below
which UAVs cannot sustain a standard half-hour reconnais-
sance mission. The graph clearly shows that combinations of
even moderate weather intensity can drastically reduce UAV
viability.
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Fig. 3: Battery life degradation under four weather conditions

In contrast, Fig. 4 presents the impact of environmental con-
ditions on detection accuracy. The accuracy function linearly
decreases from a maximum of 95% under Clear weather to
78.8% in Severe conditions. The Moderate scenario barely
meets the 85% minimum accuracy threshold, while the Severe
case falls below it, indicating substantial risk to reliable target
recognition. The accuracy degradation is more gradual than the
battery drop, yet it still demonstrates the UAV’s diminishing
sensing capability in challenging weather. Even when flight
duration remains viable, the UAV may fail to deliver mission-
relevant outputs due to poor sensing performance. These find-
ings emphasize the importance of treating sensor reliability as
a first-class constraint in UAV mission design, particularly for
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Fig. 4: Detection accuracy degradation under four weather
conditions

surveillance, disaster response, or reconnaissance applications
where decision-making depends on accurate data acquisition.
Following the analysis of battery life and detection accuracy
degradation due to adverse weather conditions, we now eval-
uate the system-level impact using the CLD for the UAV-
based deforestation monitoring system [14]. While [14] does
not provide a single consolidated equation for estimating CO5
impact, it outlines a causal sequence that links UAV autonomy,
scan probability, service availability, detection accuracy, and
intervention success. Autonomy affected by battery life serves
as a key factor in determining flight duration and, conse-
quently, the area that can be effectively monitored. In this
study, we adopt the same computational steps proposed in [14],
using UAV performance metrics, particularly autonomy and
detection accuracy, as inputs to quantify the system’s capacity
for deforestation prevention and corresponding CO, emission
mitigation under different environmental conditions.

Fig. 5 presents a surface plot of CO2 emission reduction
(tons) as a function of UAV autonomy (hours) and detection
accuracy (%), using four weather conditions: clear, light,
moderate, and severe. The clear condition, representing ideal
weather, supports a high autonomy of 24 hours and a detection
accuracy of 95%, yielding a potential CO5 emission reduction
of 179.6 tons per year. In contrast, under severe conditions,
with reduced autonomy (5.45 hours) and degraded accuracy
(78.8%), the potential drops to only 32.9 tons, reflecting an
over 80% reduction in system impact. The plot demonstrates a
clear nonlinear relationship: while the CO5 emission reduction
is stable and high in the upper-right region (high autonomy
and accuracy), it rapidly declines in the lower-left zone (poor
autonomy and accuracy). The four scenario points are high-
lighted on the surface, clearly illustrating how increasingly
adverse weather conditions shift the UAV system toward a
lower-performance and less effective state.

Overall, this evaluation confirms the system’s strong sensi-
tivity to weatherdriven performance degradation and highlights
the importance of maintaining both high autonomy and detec-
tion accuracy to achieve meaningful environmental outcomes.

250

200

150

CO, Emission
=
o
o

o
=3

o

80

Autonomy (hours) 25 75 Detection Accuracy (%)

Fig. 5: CO4 emission reduction decreases with lower auton-
omy and detection accuracy

These findings are crucial for weather-aware mission planning,
battery design, and sensor optimization in UAV-based moni-
toring systems.

V. CONCLUSION

This study used a CLD to conceptually model the influence
of adverse weather variables, specifically rainfall intensity and
wind speed, on the performance of UAV-based deforestation
monitoring systems. Building on this, we develop static func-
tional models to quantify the impact of these weather variables
on two UAV performance metrics: battery life and detection
accuracy. Numerical analysis revealed that even moderate
weather conditions can significantly degrade UAV endurance
and sensing capability, with clear thresholds identified for
mission failure. For example, battery life dropped below the
critical 30-minute threshold in severe weather, and detection
accuracy fell below 85% under high rainfall intensity and high
wind speed. These results illustrate the effects described in the
CLD, where weather impacts propagate through the system,
reducing both autonomy and monitoring effectiveness. By
formalizing these relationships and visualizing them through
interpretable surface plots, the study provides a practical foun-
dation for risk-aware mission planning and design optimization
of resilient UAV operations in adverse weather.
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