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Abstract—Machine learning (ML) models are extensively em-
ployed in a wide range of real-world applications, including
safety-critical ones. The reliability of ML application systems
is a critical concern, particularly in situations where incorrect
system outputs lead to severe consequences. This paper aims to
enhance the reliability of ML-based image classification systems
by exploiting a transformer-based model with non-transformer
models in two distinct architectural frameworks, specifically the
Majority Voting (MV) and Recovery Block (RB). Instead of
relying on a single ML prediction, the proposed architectures
leverage multiple ML models, executed simultaneously for the
same input, to improve system output reliability. Our exper-
imental results on image classification tasks show that three-
version systems employing transformer models exhibit reliability
enhancements in both MV and RB architectures. Moreover, con-
sidering performance overhead imposed by transformer models,
we evaluated the response times as a performance metric of ML
systems. The evaluation results show that RB architecture proves
to have shorter response times than MV architecture.

Index Terms—Image classification, N-version ML system, Re-
covery block, Reliability, Transformers

I. INTRODUCTION

Machine learning (ML) has been used extensively in a
diverse range of practical fields, including healthcare, finance,
transportation, and beyond. Nevertheless, the use of ML in
safety-critical systems, such as self-driving cars, poses a
challenge in high reliability and safety. ML models inherently
introduce uncertainty into their outputs and are highly sensitive
to changes in input data. In a safety-critical ML system,
incorrect outputs can lead to detrimental consequences, such
as accidents caused by automated driving [1]. To ensure the
reliability of ML system in safety-critical applications, several
techniques are introduced, including risk analysis, model val-
idation, redundant configurations, and ML testing. ML testing
is an approach to detecting defects between existing ML
models and required conditions [2]. However, the test coverage
on testing data does not always guarantee the correctness of
the predictions for anomaly examples [3].

To make ML systems dependable, redundant architecture
provides a simple and effective solution. As an approach to
improve ML system reliability, we can leverage the tradi-
tional software fault-tolerant technique known as N-version
programming (NVP) [3]. In contrast to NVP, the N-version
ML system can exploit the diversity of input data to obtain

different prediction results. Similar to ensemble ML models
[4], combining multiple prediction results can improve deci-
sion reliability. The existing studies on N-version ML system
using commonly-adopted ML models such as Convolution
Neural Networks (CNNs) and Deep Neural Networks (DNNs)
[5]. For computer vision tasks, recently, transformer-based
vision models like Vision Transformer (ViT) have evolved and
surpassed the most of conventional models [6]. Transformer
is originally designed for natural language processing task,
then it becomes a norm of many machine learning tasks
including computer vision [7]. While inclusion of transformer
models into N-version ML systems can benefit the improved
reliability, the combination of transformer and existing non-
transformer models have not been largely investigated.

In this paper, we aim to leverage a transformer-based
model within redundant architectures for ML-based image
classification systems. As transformer-based models, such as
ViT, employs a different structure from the existing DNN
models, the redundant architecture can benefit the diversity
of predictions to improve the reliability of system outputs.
Our objective is to investigate the potential for combining a
transformer-based model and the conventional DNNs, referred
to non-transformer models in this paper, in N-version ML
architectures for image classification systems. Despite the
competitive prediction accuracy, transformer models often re-
quire more computing resources and potentially decreases the
overall performance of the ML system. The synchronization
overhead for decision making may become a concern when
transformer is used in parallel with other light-weight non-
transformer models.

To address the issue, we propose alternative redundant ML
system architectures inspired from the traditional software
fault-tolerant technique, known as Recovery Block (RB). RB
is a technique that achieves fault avoidance where multiple
alternative solutions are executed in a sequence until an ac-
ceptable solution is found, as determined by an adjudicator [8].
This technique used in software design to enhance reliability
[9]. The proposed RB architecture leverages the benefits of the
transformer’s superior accuracy while minimizing the potential
drawbacks associated with its computational demands. In this
architecture, non-transformer models are used in the primary
block and determine the output when they agree with the



inference results. When the non-transformer models fall in
disagreements, the architecture uses a transformer model as
an RB to determine the final output. We present two different
modes of RB architectures. In the first mode, the output of
the RB solely relies on the output of the transformer model.
This mode is akin to the original RB approach and is named
Independent RB. Alternatively, we can consider a system
memorizes the outputs from non-transformer models and make
the final decision by majority voting (MV) of all the prediction
results at the RB. This mode of RB architecture is referred to
as Dependent RB since the output of RB depends also on the
output of the primary block. Although Dependent RB requires
the memory and additional comparison process for making
the final decision, the reliability of system output potentially
further improves. To evaluate the effectiveness of the proposed
architectures, we conducted experiments on the CIFAR-10 and
CIFAR-100 datasets using a various combination of trans-
former and non-transformer models. Our experiment results
show that incorporating transformer models in three-version
ML systems achieves a higher reliability on both CIFAR-
10 and CIFAR-100 datasets than a system solely relying on
a transformer model. Notably, the combination of BiT, ViT,
and ResNet achieves the highest scores, reaching 0.9867 for
CIFAR-10 and 0.9373 for CIFAR-100, surpassing the reliabil-
ity of all other combinations. We also evaluated the response
times of two architectures, that are the elapsed time from
the start of the processing an input to the completion of the
processing. The evaluation results show that the RB approach
yields shorter response times than the MV architecture.

The rest of the paper is organized as follows. In Section
II, we discuss the related work. In Section III, we introduce
the background of our study. Section IV proposes the two
variants of RB architectures. Section V presents the details of
the experimental design. Section VI describes the experimental
results. Finally, section VII gives our conclusion.

II. RELATED WORK

N-version ML systems have been studied as a redundant
architecture for improving the reliability of ML system outputs
[21]. This approach leverages multiple input and diverse ML
models to generate multiple predictions to determine a better
output than the output from the system relying on a single
model. The previous study has demonstrated that the outputs
of ML modules can be diversified by using different versions
of ML algorithms, neural network architectures, and perturbed
input data [5]. From the theoretical perspective, the reliability
models for two-version and three-version image classification
ML architectures have been presented using diversity metrics
[21] [10]. The theoretical results showed that the Triple-
model with Triple-input architecture, which leverages both
input and model diversities, has an advantage in the reliability
of the three version ML systems [10]. While N-version ML
systems enhance the reliability of system outputs through
redundancy, they incur additional costs and processing over-
heads. To evaluate the performance overhead incurred multi-
version ML systems, the performance of two-input MLSs

has been theoretically investigated by queueing analysis [11].
However, the analysis relied on theoretical assumptions like
exponentially distributed service time and Poisson job arrival,
lacking empirical validation in real-world scenarios. In recent
study [12], Two-input ML systems were implemented and
empirically investigated their performance such as response
time, throughput, and energy consumption. In contrast to these
studies, this paper is the first to consider the performance
of three-version systems employing transformer with non-
transformer models.

The reliability and robustness of ML systems using trans-
former models is an open research challenge that requires
further investigation. A transformer model is a type of deep
learning model that processes input data in parallel, using
self-attention and feed-forward neural networks. In contrast to
traditional recurrent neural networks (RNNs) that process data
sequentially, transformer models leverage parallel attention
mechanisms. The first transformer model introduced in 2017
[6] uses a multi-head attention mechanism, which allows the
model to attend to different parts of the input and output
sequences simultaneously. ViT is the first transformer model
for computer vision tasks proposed in [13]. In the domain
of computer vision, input images are segmented into patches,
each transformed into a vector and subsequently mapped to
a smaller dimension using a linear operator. Many variants
of ViT have been presented such as Swin Transformer [14],
TimeSformer [15], and CaiT [16]. Although transformer-based
models have achieved impressive accuracy on computer vision
tasks, they are also reported to be fragile and vulnerable to
adversarial attacks or input perturbations [17]. Various studies
were conducted to improve the robustness of ViT against
perturbations to inputs. The robustness of ViT models are
evaluated by various measures in comparison with ResNet
baselines has been conducted [18]. The robustness of ViT
and convolutional neural networks (CNNs) models has been
assessed by intentionally incorporating adversarial examples
into the training dataset [17]. However, these studies aimed at
increasing the robustness of the ML module do not guarantee
complete system reliability.

A few existing studies consider the combination of a
transformer model with a non-transformer model for making
reliable ML systems. A recent study presented the integration
of ViTs and CNNs in safety-critical systems against adversarial
perturbations [19]. While ViT employs self-attention to learn
relationships in images, suitable for tasks like classification
and object detection, CNNs use convolution to capture spatial
relationships in images, ideal for tasks like segmentation
and edge detection. Another study explored CNNs, ViTs,
and Data efficient image Transformers (DeiTs) for image
classification, both individually and using ensemble learning
to achieve state-of-the-art accuracy in specific domains like
ecological datasets [20]. The experiment results show that the
ensemble of DeiTs potentially achieve improved performance
compared to individual models alone. Instead of ensembling
multiple transformers, we focus on exploiting the comple-
mentary properties of transformer and non-transformer models



as independent components. Furthermore, we explore their
combined application and employ redundant configurations to
achieve a reliable image classification system.

III. BACKGROUND

A. Transformer

Transformer models have revolutionized the field of nat-
ural language processing (NLP). The original transformer
introduces a self-attention mechanism and replaces sequential
processing with parallel attention mechanisms [10]. This en-
ables efficient learning of long-range dependencies in texts
and achieved state-of-the-art results in machine translation,
surpassing RNNs that were the dominant approach at the time.
After the first transformer-based computer vision model was
presented [6], many variants of ViT have been investigated.
In this study, we employ ViT and CaiT as representative
transformer-based models as explained below.

1) ViT: ViT extends the transformer architecture to the
domain of computer vision, where demonstrated remarkable
success in image classification tasks. Directly applying the
transformer model to computer vision tasks would require
attention between every pair of pixels, which is not practical
due to the quadratic cost in the number of pixels. The ViT
model overcomes this limitation by reshaping an image into
a sequence of flattened patches of size P × P, effectively
reducing the sequence input length by P 2 times. Generally,
the patch size P is chosen to be 16 or 32. By leveraging
the power of self-attention, ViT achieves state-of-the-art per-
formance on various computer vision tasks, including image
classification, object detection, and segmentation, surpassing
the performance of traditional CNN architectures on several
benchmark datasets.

2) CaiT: CaiT (Class-Attention in Image Transformers) is a
type of image classification architecture that uses a novel class-
attention layer and builds upon the encoder-decoder architec-
ture [23]. This architecture with specific class-attention offers a
more effective processing of the class embedding. Unlike tradi-
tional ViT architectures where self-attention layers within the
encoder simultaneously process both individual image patches
and a class embedding, CaiT separates these tasks explicitly
into distinct processing stages. In the initial stage, dedicated
self-attention layers focus solely on processing individual im-
age patches without class embedding. Subsequently, the class
attention stage employs a dedicated set of layer to refine the
class embedding by extracting the content/relevant information
from the processed patches. This explicit separation mitigates
potential conflicts and leads to better performance compared
to traditional transformer architectures as evidenced by state-
of-the-art results on benchmark datasets such as ImageNet
[23]. CaiT achieves these performance gains even without
reassessed labels or additional training data and leveraging
class attention for superior accuracy.

B. ML Architecture: Majority Voting

In this study, we focus on ML-based image classifications
that receive image data as input and predicts the label of

the input image. The architecture of ML system can leverage
various forms of diversity to determine a better output than
a single ML model. A type of three-version ML architecture
using three ML models with a single input is called Triple
Model Single Input (TMSI) system [21]. As shown in Fig.1,
the same input image is used to predict the class labels by
three models and the final decision is made by a MV. A voting

Fig. 1. Triple Model Architecture

decision from diversified prediction results can correct errors
and avoid an undesirable decision. Following a MV basis, the
system outputs incorrect results when more than two modules
output errors for the same input. In this study, we focus on
a three-version image classification system. The architecture
is essentially a variant of triple modular redundancy (TMR)
whose reliability characteristic is well known when failure
probabilities of modules are independent [24].

C. Recovery block (RB)

RB is a well-known software fault tolerance technique
which is a method developed by Randell [25]. Software fault
tolerance is the ability for software to detect and recover from
a fault that is happening or has already happened in either the
software or hardware in the system in which the software is
running to provide service by the specification.

In a system with RBs, the system view is broken down
into fault recoverable blocks. Each block contains a primary
and secondary case code along with an adjudicator. Upon
first entering a unit, the primary module is run followed by
the acceptance test (AT). If the module passes the AT, it is
considered reliable; otherwise, it is considered faulty and then
tries to roll back the state of the system and tries the secondary
alternate.

One of the benefits of RB Compared with NVP is the
invocation of RB is limited only when the AT fails at the
primary block. This means computational resources necessary
for executing the RB are conserved when the primary block
performs correctly. Therefore, RB can be considered a re-
source efficient alternative for simple redundancy scheme like
NVP.

IV. RECOVERY BLOCK (RB) ARCHITECTURE

N-version ML systems, while aiming to enhance reliability
through redundancy by employing multiple models in parallel,
can incur significant computational overhead. Such an over-
head becomes particularly concerning when considering the
inclusion of resource-intensive models like transformers. To



address this challenge and exploit the potential of transformers
for improved reliability without compromising efficiency, We
propose RB architectures for ML systems, to facilitate reliable
decision-making with multiple ML models. This architecture
consists of a primary block and a backup block (i.e., RB) by
using multiple versions of ML module and an adjudicator to
decide the correct output. The idea is to execute the primary
block of the algorithm and check its output with an acceptance
test. If the test passes, the output is returned. Nevertheless, If
the test fails, the primary version is discarded and a backup
version is executed. The process is repeated until either a
valid output is obtained or the system drop the output. The
adjudicator is a component that implements the acceptance
test and the selection of the backup component. In contrast
to the N-version ML system, where all redundant models
are run concurrently and each processing yields a different
result, in the RB technique, all redundant models are not run
concurrently. Instead, these models are executed sequentially,
following the primary and recovery block. Two approaches are
considered to determine the output.

A. Independent RB

Fig 2 shows the RB architecture operates within the con-
text of an image classification system, utilizing both trans-
former and non-transformer models. Given the computational
demands of the transformer model, it serves as a backup
mechanism, independently determining the final output. We
refer to this architecture option as Independent RB. This
architecture uses two non-transformer models (CL1 and CL2)
as the primary processing block, with the transformer model
(CL3) serving as a backup recovery block. In cases where the
non-transformer models solely produce conflicting labels, the
final output is determined by the transformer model.

Fig. 2. Independent RB architecture

B. Dependent RB

Alternatively, we can consider a system depends on the out-
puts of non-transformer models and makes the final decision
by MV at the recovery block. Fig. 3 shows the RB architecture
referred to as Dependent RB. In this approach, the final output
is determined not only from the prediction result at a recovery
block but also the prediction results from the primary block.
Although Dependent RB necessitates memory of prediction
results and an additional comparison step for making a final
decision, the approach potentially improves the reliability of

the ML system. Like the MV architecture, if all three model
inference results are different, the system drops the output to
avoid unsafe decision.

Fig. 3. Dedependent RB architecture

V. EXPERIMENT

To evaluate the effectiveness of the proposed ML system
architectures we conducted performance experiments using
image classification datasets.

A. Experiment configuration

In this experiment, we use five image classification models,
ViT, CaiT, Residual Network (ResNet), Densely Connected
Convolutional Networks (DenseNet) and Big Transfer (BiT)
trained for image classification tasks on the CIFAR-10 and
CIFAR-100 datasets [27]. The CIFAR-10 dataset consists of
60,000 color images of size 32x32, divided into 10 different
classes, with 6,000 images per class. The CIFAR-100 dataset is
similar to CIFAR-10, except that it has 100 classes containing
600 images each. Both datasets are split into 50,000 training
images and 10,000 test images. For ViT, we use ViT b16. This
model uses 16x16 pixel patches and was initially pre-trained
on ImageNet21K. The model is fine-tuned for CIFAR10 and
CIFAR100, transitioning from the native 32x32 pixel resolu-
tion to 224x224. The ViT b16 comprises 85 million trainable
parameters. For CaiT, we use CaiT-S24 at resolution 224 with
repeated augmentation originally pre-trained on ImageNet.
The learning rate of the AdamW optimizer and weight decay
is set to 0.00001. The S24 variation comprises 46 million
trainable parameters. For non-transformer models, we use the
ResNet152V2, DenseNet201 and BiT-M-R101×1 which were
originally pre-trained on ImageNet and contained a total of
83, 42, and 42 million trainable parameters respectively. We
evaluated the performance of three-version image classification
systems in different architectures using these models.

The experiments were conducted on the computer with the
following configurations.



TABLE I
PERFORMANCE COMPARISON OF SINGLE VERSION SYSTEMS ON

CIFAR-10 DATASETS: RELIABILITY, AND RESPONSE TIME

Model Type Model Reliability RT (ms)
Non Transformer BiT 0.9674 4.0176

ResNet 0.9721 4.1142
DenseNet 0.9687 4.2511

Transformer ViT 0.9869 7.6287
CaiT 0.9771 11.7696

TABLE II
PERFORMANCE COMPARISON OF SINGLE VERSION SYSTEMS ON

CIFAR-100 DATASETS: RELIABILITY AND RESPONSE TIME

Model Type Model Reliability RT (ms)
Non Transformer BiT 0.8799 3.8960

ResNet 0.8296 4.1106
DenseNet 0.844 3.9880

Transformer ViT 0.9175 8.3130
CaiT 0.8559 11.7647

• GPU: NVIDIA GeForce RTX 3060 x 12GB GDDR6
• Processor: 11th Gen Intel(R) Core (TM) i7-11700 @

2.50GHz 2.50 GHz
• RAM: 64GB
• Operating System: windows 11

B. Evaluation metrics

1) System output reliability: System output reliability is
defined as the probability that the output of the system is
correct in terms of ground truth in the real world. We assume
that the correct answer is given by real application context. For
example, in a medical diagnostic system, the identification of
abnormal conditions such as tumors or irregular heart rhythms
is crucial. Any misidentification of these critical conditions
could lead to serious medical consequences and is considered
an error. As we consider the image classification system in
this study, the system output reliability is evaluated by the
probability of correct label predictions over the total number
of input images.

2) Task Drop Ratio: The drop ratio is calculated by dividing
the number of dropped outputs by the total number of sample
inputs. In N-version ML system with MV and Dependent RB
architectures, a requested task is dropped when the inference
results do not reach a consensus by majority voting. Since a
higher task drop ratio decreases the system throughput, smaller
task drop ratio is better.

3) Response Time (RT): The RT is the time between
the start of processing the input within the model and the
completion of processing, including the generation of the
corresponding output for each individual input in the test
dataset. A shorter RT can benefit user experience, especially
in applications like image classification where immediate
results are preferred. Moreover, a system with a shorter RT
can process more inputs in a given time period, thereby
increasing the overall efficiency of the system. This becomes
crucial in scenarios such as autonomous driving, where real-
time decision-making is vital. RT depends on several factors.

The complexity of the model is a significant factor as more
complex models, such as transformer models, may consume
more resources and take a longer time to process inputs.

C. Four-version architecture

In order to investigate the impact of the number of versions,
we also consider the evaluation of four-version architectures
that use both transformer and non-transformer models. The
four-version architecture also follow three decision models:
MV, Independent RB and Dependent RB. In the MV architec-
ture, four models are executed in parallel and the final output
is determined by the majority voting. If the predictions from
more than two models out of the four concur, their agreement
is designated as the final output. This approach prioritizes
agreement among the models, potentially enhancing reliability
in scenarios where individual models might exhibit errors. In
the RB architectures, the primary module employs three non-
transformer models and the RB uses a transformer model. If
all three non-transformer models predict the same class, their
consensus is chosen as the final output. If no such unanimity
exists, the transformer model in the RB is used. Similar to
three-version architectures, Independent RB solely relies on
the output of the transformer model, while Dependent RB
applies MV of all prediction results at the RB.

VI. EXPERIMENTAL RESULT

This section shows the experiment results on three-version
image classification systems in different architectures. For the
comparative purpose, we also evaluated the single version sys-
tem which relies on a single classifier model and four-version
systems. The reliability, the task drop ratio, and the RT are
evaluated on the test datasets for CIFAR-10 and CIFAR-100.
A total of 10,000 test samples were used from each dataset
in the evaluation. For RT, we take the average of response
times for the input samples leading to the system outputs.
The dropped samples are not counted in the calculation of the
average RT.

A. Single version architecture

Tables I and II illustrate a trade-off between reliability and
RT in single-version deep learning architectures for image
classification on the CIFAR-10 and CIFAR-100, respectively.
In the single-version systems, reliability is the same as the
accuracy of the model on the test datasets because the sys-
tem output solely relies on the model output. Transformer
models (i.e., ViT and CaiT) consistently demonstrate superior
reliability compared to non-transformer models (BiT, ResNet,
DenseNet) in both datasets. ViT achieves the highest reliability
in both datasets (0.9869 for CIFAR-10 and 0.9175 for CIFAR-
100), underlining the transformer-based model’s suitability for
tasks where precise and reliable predictions are crucial. Non-
transformer models exhibit varying reliability performance.
While BiT demonstrates good reliability on both datasets
(0.9674 in CIFAR-10 and 0.8799 in CIFAR-100), some models
like BiT and ResNet show a significant drop in reliability
within the CIFAR-100 dataset (0.9721 in CIFAR-10 versus



TABLE III
PERFORMANCE COMPARISON OF THREE-VERSION SYSTEMS ON CIFAR-10 DATASETS: RELIABILITY, DROP RATIO, AND RESPONSE TIME

Transformer Non-transformer Architecture Reliability Drop ratio Response (ms)
ViT BiT,ResNet MV 0.9867 0.30% 21.4032

Independent RB 0.9854 – 12.9570
Dependent RB 0.9867 0.30% 13.0409

DenseNet,ResNet MV 0.9852 0.37% 18.4293
Independent RB 0.9839 – 9.7578
Dependent RB 0.9852 0.37% 9.9268

DenseNet,BiT MV 0.9856 0.30% 20.2324
Independent RB 0.9845 – 10.4539
Dependent RB 0.9856 0.30% 12.4924

CaiT BiT,ResNet MV 0.9829 0.37% 24.2560
Independent RB 0.9808 – 12.8259
Dependent RB 0.9829 0.37% 12.7785

DenseNet,ResNet MV 0.9820 0.35% 21.5277
Independent RB 0.9800 – 10.0118
Dependent RB 0.9820 0.35% 9.9741

DenseNet,BiT MV 0.9826 0.37% 19.9956
Independent RB 0.9800 – 10.4614
Dependent RB 0.9826 0.37% 10.4361

TABLE IV
PERFORMANCE COMPARISON OF THREE-VERSION SYSTEMS ON CIFAR-100 DATASETS: RELIABILITY, DROP RATIO, AND RESPONSE TIME

Transformer Non-transformer Architecture Reliability Drop ratio Response (ms)
ViT BiT,ResNet MV 0.9336 3.87% 19.1933

Independent RB 0.9165 – 11.2869
Dependent RB 0.9336 3.87% 11.2898

DenseNet,BiT MV 0.9333 3.57% 18.2489
Independent RB 0.9177 – 10.7083
Dependent RB 0.9333 3.57% 10.7308

DenseNet,ResNet MV 0.9169 4.37% 19.0103
Independent RB 0.9029 – 11.5010
Dependent RB 0.9169 4.37% 11.3458

CaiT BiT,ResNet MV 0.9162 4.50% 22.0928
Independent RB 0.8859 – 11.7372
Dependent RB 0.9162 4.50% 11.6875

DenseNet,BiT MV 0.9152 4.02% 21.1232
Independent RB 0.8881 – 10.8585
Dependent RB 0.9152 4.02% 10.9293

DenseNet,ResNet MV 0.9022 4.60% 22.3474
Independent RB 0.8754 – 11.2746
Dependent RB 0.9022 4.60% 11.1437

TABLE V
PERFORMANCE COMPARISON OF FOUR-VERSION SYSTEMS ON CIFAR-10 DATASETS: RELIABILITY, DROP RATIO, AND RESPONSE TIME

Transformer Non-transformer Architecture Reliability Drop ratio Response (ms)
ViT BiT,ResNet,DenseNet MV 0.9918 1.81% 25.2376

Independent RB 0.9865 – 17.2348
Dependent RB 0.9918 1.81% 17.2917

CaiT BiT,ResNet,DenseNet MV 0.9899 1.95% 30.0104
Independent RB 0.9805 – 17.8531
Dependent RB 0.9899 1.95% 17.8993

TABLE VI
PERFORMANCE COMPARISON OF FOUR-VERSION SYSTEMS ON CIFAR-100 DATASETS: RELIABILITY, DROP RATIO, AND RESPONSE TIME

Transformer Non-transformer Architecture Reliability Drop ratio Response (ms)
ViT BiT,ResNet,DenseNet MV 0.9549 10.99% 23.5282

Independent RB 0.9199 – 16.0732
Dependent RB 0.9549 10.99% 15.9308

CaiT BiT,ResNet,DenseNet MV 0.9440 11.30% 21.1340
Independent RB 0.8819 – 14.2206
Dependent RB 0.9440 11.30% 14.0065



0.8296 in CIFAR-100). In terms of RT, transformer models
incurred significantly longer RTs compared to non-transformer
models when processing a single input. CaiT consistently
exhibited the longest RT across both datasets, followed by
ViT. Conversely, non-transformer models offered faster RTs,
with BiT consistently demonstrating the shortest RT in both
datasets, followed by other non-transformer models.

B. Three-version architectures

Tables III and IV compare the performance of three-
version systems in different architectures on the CIFAR-10
and CIFAR-100 datasets, respectively. These systems combine
different pairs of transformer and non-transformer models
along with three different architectures: MV, Independent RB,
and Dependent RB. The analysis of reliability shows how
the choice of model combination and architecture interact
and influence the outcome. For the CIFAR-10 dataset, the
combination of BiT, ViT and ResNet consistently achieves the
highest reliability across all architectures. Interestingly, with
the BiT, ResNet and CaiT combination, the reliability remains
identical to 0.9829 between MV and RB architectures despite
the difference in RT. However, in the CIFAR-100 dataset,
this combination exhibits lower reliability of 0.9162 across all
architectures compared to the BiT, ViT and ResNet combina-
tion. Compared to the reliability of single-version architecture,
three-version architectures generally achieve higher reliability
on both the CIFAR-10 and CIFAR-100 datasets.

For the task drop ratio, both MV and Dependent RB archi-
tectures encounter task drops in a small fraction of cases (0.3%
for CIFAR-10 and 4.6% for CIFAR-100), which are caused by
disagreement of three prediction results. Note that Independent
RB does not have task drops entirely in both datasets because
it relies solely on the transformer model output, without com-
parison to non-transformer models or requiring a consensus
through voting. Single-version architectures inherently absent
task drops because they solely rely on the prediction from a
single model, eliminating the possibility of disagreement.

For the RT, we observe that CaiT has the longest RT across
both datasets and all architectures, due to deeper architecture
compared to other models. Notably, RB architectures demon-
strate a significant reduction in RT compared to conventional
MV architectures and demonstrate the potential for improving
system performance through reduced processing overhead
without compromising reliability. Interestingly, there is little
difference in RT between Independent RB and Dependent
RB in most cases. Despite Dependent RB’s inherent overhead
due to memory access and an additional comparison step, the
overhead does not impact the total RT significantly.

For a reliable and efficient image classification system,
Dependent RB potentially achieves high reliability and a fast
RT in both datasets. While MV boasts the highest reliability,
its slow RT renders it impractical for real-time applications.
Dependent RB, on the other hand, exhibits a good balance be-
tween reliability and RT but falls slightly short of Independent
RB in both aspects.

C. Four-version architectures

While the main focus on this paper is comparison of three-
version architectures, it is also an interesting question on
how reliability can be further enhanced with more versions.
To answer this question, we construct a four-version system,
consisting of three non-transformer models with one trans-
former model. Tables V and VI compare the performance
of these systems on the CIFAR-10 and CIFAR-100 datasets,
respectively. First, when we look at the reliability, four-version
systems tend to achieve higher reliability compared to the top-
performing three-version configurations (presented in Table V
and VI) across all architectures and datasets. For instance, the
four-version system with ViT achieves the highest reliability
on CIFAR-10. Four-version architectures generally display
comparable or marginally superior reliability compared to their
three-version architecture. The results show that inclusion of
an additional diverse model has the potential to enhance the
reliability of the ML system.

For the task drop ratio, four-version architecture of both
MV and Dependent RB show significantly higher drop ratios
compared to the three-version counterparts. Specifically, the
three-version systems exhibit drop ratios in a small fraction
of cases 0.3% for CIFAR-10 and 4.6% for CIFAR-100,
whereas the four-version systems range between 1.81% and
1.95% for CIFAR-10 and 10.99% and 11.30% for CIFAR-100.
Independent RB avoids task drops similar to that three-version
architecture.

For the RT, four-version architectures consistently demon-
strate longer RTs compared to their three-version counterparts
in both CIFAR-10 and CIFAR-100 datasets. In the four-
version architecture, the RTs are notably higher, ranging from
approximately 15.93 ms to 30.01 ms for CIFAR-10 and from
around 14.01 ms to 23.53 ms for CIFAR-100.

The evaluation results of four-version systems show that
MV architectures generally achieve high reliability. However,
this benefit comes at the cost of increased RT. In contrast, Inde-
pendent RB prioritizes faster RTs but may potentially sacrifice
some reliability compared to other architectures. Dependent
RB strikes a balance, offering competitive response times
alongside good reliability. Therefore, the optimal architecture
selection depends on the specific application’s priorities. In ap-
plications where absolute reliability is paramount, MV might
be the preferred choice. Conversely, when faster response
times are critical, Independent RB could be a better option,
particularly for computationally intensive tasks. Additionally,
Dependent RB emerges as a versatile alternative, well-suited
for scenarios demanding a balance between efficiency and
reliability.

VII. CONCLUSION

We proposed N-version ML system architectures combin-
ing transformer and non-transformer models to improve the
system output reliability. We particularly presented a new
architecture inspired by RB to address the high computa-
tional cost of transformer models. Conventional N-version ML
systems often suffer from high computational costs due to



the parallel execution of multiple models. Our architecture
incorporates two modes: Independent RB and Dependent RB.
While Independent RB directly utilizes the output from the
transformer model, Dependent RB stores outputs from non-
transformer models and performs a majority vote to determine
the final output. The proposed architecture is evaluated by
image classification on CIFAR-10 and CIFAR-100 datasets.
Notably, MV and Dependent RB architectures exhibit the same
level of system reliability, even though MV entails longer
response times than Dependent RB across all combinations.
Three-version architectures leverage the combination of three
different models BiT, ViT, and ResNet through MV and RB
techniques. The combinations of different models through
redundant architecture can potentially enhance the reliability
of image classification systems.

Future studies will explore to further improve and general-
ize these findings. First, we can evaluate other architectures
with versions more than four involving multiple transformer
models and explore the desirable balance between reliability
and overheads. Second, we can evaluate the architectures
on diverse tasks beyond image classification. Third, we may
delve deeper into robustness against various failures. Finally,
it is also an interesting challenge to explore the potential of
combining the N-version ML system with other reliability-
enhancing techniques to enhance system reliability.
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