
Maintaining Performance of a Machine Learning
System Against Imperfect Retraining

Zhengji Wang and Fumio Machida
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

wang.zhengji@sd.cs.tsukuba.ac.jp and machida@cs.tsukuba.ac.jp

Abstract—Machine learning systems (MLS) often consist of
diverse machine learning models to attain demanding and com-
plex objectives. Despite their advanced functionalities, MLSs
encounter the inevitable challenge of performance deterioration
caused by distribution changes often referred to as dataset shift.
When models encountering dataset shift, retraining machine
learning model with new datasets is essential to restore the
performance. However, model retraining is not always perfect
due to component entanglement, resulting in failures to maintain
the required level of performance. To address this issue, this
paper investigates the impact of imperfect retraining on the
overall performance of MLSs, and accordingly propose two
maintenance policies, progressive and conservative retraining
policies. We consider an MLS consisting of two sequentially-
dependent machine learning models and develop continuous-
time Markov chains capturing the dynamics of performance
degradation and retraining of machine learning models. The
results of parametric sensitivity analysis demonstrate that the
progressive retraining policy and conservative retraining policy
could provide higher service availability in different conditions.

Index Terms—Markov chain, dataset shift, machine learning
system, retraining, service availability

I. INTRODUCTION

Machine learning (ML) is a statistical approach to learning
patterns from data and generalize to unseen data, thus allowing
the need for machine to perform tasks based on the acquired
patterns without explicit instructions. In recent years, ML
has been an important technique to help make prediction,
classification and grouping, and thus plays an important role in
computer vision, natural language processing and autonomous
driving. Machine learning system (MLS) is a system that
incorporates ML models as its components. MLS allows large
teams to effectively divide-and-conquer complex engineering
tasks by making each team focusing on a specific component.
Examples of MLS includes an image captioning system, a
search advertising system, and a personalized recommendation
system [12] [13] [16].

Within the operation of MLSs, each component of ML
model might experience a deterioration in performance due
to dataset shift [1], a phenomenon in which the change in
data distribution worsen the degraded ML models’ ability
to perform the task. When encountering dataset shift in the
operation, retraining the ML models is essential to maintain
the performance. However, we witness that retraining can be

imperfect due to several reasons. For instance, ML compo-
nents might experience component entanglement [3], biased
selection of training and validation data, or over-fitting due to
inappropriate training strategy [15].

In this study, we aim to investigate the impact of imperfect
retraining related to component entanglement. When predic-
tion performance is deteriorated due to dataset shift, individual
ML models in MLS cannot be retrained jointly in many
cases. For example, some models may have been developed
by cloud providers and thus cannot be changed, or it is too
time-consuming to jointly retrain the whole system [3] [9].
This could lead to the problem of entangled enhancement,
indicating that the improvement of a certain component by
retraining does not result in the improvement in the entire
performance of the MLS. To counteract the issue of entangle
enhancement, MLS requires a careful maintenance operation
to achieve higher service availability considering the risk
of imperfect retraining. However, there are very few studies
making effort to describe MLSs from a system maintenance
perspective and analyzing the service availability.

To narrow the gap, we propose and examine two mainte-
nance policies for retraining ML models in an MLS, namely
progressive retraining and conservative retraining policies.
The progressive retraining policy retrains ML models when-
ever the performance of a component in MLS fails to achieve
the required standard, while the conservative retraining policy
only retrains the ML models when the overall performance
of the system is deteriorated. To compare the effectiveness of
the retraining policies, we develop Continuous-time Markov
Chains (CMTCs) that can capture the state transitions of
an MLS consists of two sequentially-dependent ML models.
Through the comprehensive sensitivity analysis on the pro-
posed models, we find that the conservative retraining policy
and the progressive retraining policy have advantages in terms
of system availability in different conditions.

To sum up, the paper makes the following contributions:
• We formulate the problem of imperfect retraining encoun-

tered in operations of MLSs.
• We propose two maintenance policies, the progressive

and the conservative retraining policies, and evaluate the
effectiveness through the analysis of CTMCs representing
the state transitions of the MLS.

The rest of this paper is organized as follows: Section II
presents the related work. Section III explains the setting of
the problem in detail. Section IV proposes the availability
modelling of the MLS using CTMC. Section V conducts
numerical analysis on the availability models of the system.
Finally, Section VI concludes the paper.

II. RELATED WORK

A. Dataset Shift

Dataset shift, also known as concept drift, is an issue that
has been widely studied in the ML community. It was first
defined as ”cases where the joint distribution of inputs and
outputs differs between training and test stage” [4]. Later,
many other definitions were proposed [5] [6] [7]. In this paper,
we adopt a more unified and comprehensive definition, which
is, for any situation in which training and test data follow
distributions that are in some way different [1]. Dataset shift
can be due to either sample selection bias, which is a bias
caused by training set being selected non-uniformly from the
population, or non-stationary environment, in which real-world
data is not stationary in the sense of time and space [1].
Regardless of the reason, dataset shift becomes a main factor
threatening the performance of the MLS over the time, and any
remedies to recover the performance is necessary for long-run
operation.

B. Machine Learning Component Entanglement

There are different aspects with regard to ML component
entanglement that have been studied. In a component-based
MLS, when the quality of a component depends on the
output of previous components, in time of system failure,
sometimes blame cannot be assigned to individual components
because it is not possible to disentangle their individual impact
on the final error [3]. A self-defeating improvement is a
unique problem observed in a component-based MLS. Under
the assumption of the independent training, an improvement
to the upstream model might result in no change or even
deterioration in at least one of its downstream models [2].
This is dramatically different from software system, in which
improvement to a certain component usually would guarantee
to improve the whole system [10].

C. Countering Imperfect Retraining

Existing studies on MLS against imperfect retraining either
focuses on proposing a more reliable ML algorithm [1], pro-
viding a monitoring system by introducing the human factor to
reduce the potential failure in training [3], or trying to diagnose
the root of the failure and made corresponding adjustment to
the model themselves [2]. In this study, instead of focusing on
the design of algorithm or post-processing to prevent imperfect
retraining, we focus on minimizing such failure’s influence
for the MLS. This approach shared resemblance to software
system failure study such as [11], but handling failure in
training for MLS is distinct from handling software system
failure. Unlike software system, each component in the MLS
lacks explicit functionality [10], therefore an update to a

certain component cannot guarantee the improvement of the
whole system.

III. PROBLEM SETTING

A. Machine Learning System

We consider an MLS consisting of multiple ML models as
a static directed acyclic graph (DAG), G = (V, E), where a
vertex v ∈ V represents an ML model and an edge (v, w) ∈ E
represents the output of model v being used by model w. Given
an edge (v, w), v is called the upstream model and w is called
the downstream model. Fig. 1 shows an example MLS with
an upstream model u and a downstream model d. Each vertex
in G has a function that applied on the output and data from
its upstream model. We denote this function for vertex v as
fv(x). For the parent node u which has no upstream model, it
only takes the data relevant for training from the input original
data X , we denote this part of the data as X(u). As it can be
seen in the figure, a subset of the original input X , Xu, is used
for the upstream model to process output fu(Xu). the subset
of the original input X , Xd, and the output from upstream
model fu(Xu), would be the input for downstream model. The
system’s output can be represented by fd(fu(Xu + fd(Xd)).

Fig. 1: An MLS with two components V = {u, d}, where
u is upstream of d, and the output for the system becomes
fd(X

(d), fu(X
(u))).

An example of such system was presented in [2]. The
proposed system consists of an upstream depth estimation
model to infer the z-coordinate from 2D images, and a
downstream object detection model that uses 3D information
to detect the location of cars in 3D coordinates. After the
retraining and update of the upstream model, which results in
an overall decreased mean error in distance of z-coordinate,
the downstream car detection model experiences performance
deterioration in the detection accuracy in 3D space.

a) Performance: In an MLS, we assume that the per-
formance of the model is periodically evaluated by an ideal
hypothesis dataset, denoted as Xreal, that faithfully repre-
sents the latest real-world dataset, and contains data points
{(x′

1, y
′
1),(x

′
n2
, y′n2

)}. The performance metric could be
Precision, Recall or Mean Average Error, depending on the

type of the task. Each ML model is required to satisfy a certain
level of of the performance that we refer to the threshold to the
target metric. Although the performance can be deteriorated
over the time due to dataset shift, we assume that the threshold
can be met eventually throughout multiple trials of retraining.

b) Dataset Shift: Initially, both upstream model u and
downstream model d satisfy the requirements, therefore show-
ing capability of handling real-world task. As the time goes
by, the hypothetical dataset that represents the real-world
distribution, Xreal, changes because of the dataset shift. This
process causes a gradually worsening effect for both upstream
and downstream models on Xreal, until either of those to drop
below the threshold, thus be denoted as a failure to that specific
component.

c) Training: For the training process, a dataset Xtrain

that consists of data points {(x1, y1), ..., (xn1 , yn1)} is used.
For each model v, algorithm fv is chosen from the hypothesis
set Hv based on the Xtrain. fv is trained on the dataset
Xtrain. The learning algorithm fv , set Xtrain and hypothesis
set Hv is assumed to be unchanged during the training process.
Training is conducted separately, and hence means that during
the training process of d, the result is not backward propagated
to upstream model u.

B. Imperfect retraining and self-defeating improvement

a) Imperfect retraining: The primary focus of our in-
vestigation centers on understanding the impact of imperfect
retraining on the overall performance of an MLS. To counter
the effect of dataset shift, usually retraining is necessary to
maintain the performance of the MLS. However, retraining
for a specific component might not be perfect and can even
worsen the performance of the system. We argue that, there
are mainly two types of imperfect retraining:

1) Degenerative retraining: The retraining of the model
makes that component perform even worse than before,
thus fail to benefit the system output.

2) Entangled enhancement: The retraining of the model
improves that model in its performance. However, due
to the component entanglement, the improvement fail to
benefit the system output.

For the degenerative retraining, the main cause might be
biased choice of training and validation dataset, insufficient
amount of data, or over-fitting caused by over-training. For the
entangled enhancement, the cause is usually due to component
entanglement.

b) self-defeating improvement: Self-defeating improve-
ment is a representative example of entangled enhancement
that can occur when an update to the upstream model does not
result in the improvement in performance for the downstream
model. For a system that has two-components, the entangled
enhancement is exactly the same as self-defeating improve-
ment, as there is only one downstream model, and the output
of the downstream model is also the output of the system.
The self-defeating improvement can affect the system state in
two ways: 1. When the downstream model fails to achieve the
threshold, but the upstream model achieves the threshold. In

this condition, an update in the upstream model could possibly
resulting in the worsening of the downstream model. 2. When
both the upstream model and the downstream model fail to
achieve the threshold. In this condition, if an update in the
upstream model results in a self-defeating improvement, the
downstream model may not reach the threshold. We examine
these two cases in our state-space models and analysis in
Section IV.

IV. AVAILABILITY MODELING

A. Motivation

Considering the impact of imperfect retraining in an MLS,
we aim to answer the question: What can we do to maximize
the MLS service availability? We investigate the dynamic
system’s availability under the threat of the dataset shift and
imperfect retraining in a two-component MLS. Availability is
a system performance metric which provides insight into the
coverage factor that an item or system will be available to
be committed to a specified requirement [14]. In this study,
we regard that the system is available when the downstream
model’s performance on the dataset Xreal meets the required
threshold τd. Otherwise, the system is regarded as unavailable.
We leverage stochastic models to capture the state transitions
of the MLS and quantitatively evaluate the service availability
by the probability that MLS is in available states in the
operation.

To maximize the service availability by effective retraining
of ML models, we propose two model retraining policies, the
progressive retraining policy and the conservative retraining
policy. The progressive retraining policy reflects the strategy
of actively tuning the system to keep the system updated,
while the conservative retraining policy attempts retraining
only when it is necessary. A comparison between these two
policies is conduced through numerical analysis to analyze the
effect of these policies on the service availability.

B. Progressive Retraining Policy

Under this policy, ML models are retrained from time to
time to counter the potential performance degradation due to
dataset shift. If both upstream model and downstream model
satisfy the threshold, the policy performs no retraining is made.

In reference to the performance thresholds, we define the
state of the two-component MLS as a pair (s(u, τu), s(d, τd))
where

s(x, τx) =

{
0, if model x satisfies threshold τx,
1, otherwise.

(1)

We assume that the initial state of the system is (0,0)
representing that both upstream model u and downstream
model d meet the performance thresholds (i.e., τu and τd,
respectively).

We model the state transitions of a two-component MLS
under the proactive retraining policy by the CTMC as shown in
Figure 2. We assume that the state transition times follow the
exponential distributions, but the assumption can be relaxed by

Fig. 2: A CTMC depicting the dynamic of MLS under
progressive retraining policy. The failure rate due to dataset
shift for u is λu, and for d is λd. The recovery rate for u is
µu, and for d, if it is at the state (1,0), it is µd1, and if it is at
the state(0,0), it is µd2. c1 is the coverage factor that at state
(0, 1), the recovery to u resulted in a transition to state (1, 1).
c2 is the coverage factor that at state (0, 0), the recovery to u
resulted in a transition to state (1, 1).

extending the CTMC to semi-Markov process [8]. We denote
the dataset shift transition rate for upstream model u is λu,
and the dataset shift transition rate for downstream model
d is λd. The successful recovery rate for upstream model u
is µu. For downstream model d’s retraining, if the upstream
model u is above the threshold, the successful recovery rate is
µd1, and if the upstream model u is below the threshold, the
successful recovery rate is µd2 (> µd1), because recovering
the performance of the downstream model is harder when
the upstream model is deteriorated. c1 is the coverage factor
that at state (0,1), a successful retraining of the upstream
model causes no entangled enhancement, thus not failing the
downstream model. c2 is the coverage factor that when the
upstream model is retrained at state (0,0), both the downstream
and upstream models satisfy the thresholds.

At state (1,1), no recovery should be observed. Due to
the dataset shift, the system might experience compromise
in either upstream model u or downstream model d. At
state (0,1), the upstream model u fails to reach the threshold
while downstream model d remains to be above the threshold.
Therefore, only the successful retraining to the upstream model
u can be observed. The retraining could be successful, leading
a transition back to state (1,1), or it could trigger a entangled
enhancement, which transits to state (1,0). At state (0,0), both
upstream and downstream models fail to reach the threshold,
and hence go under retraining attempts. However, retraining
upstream model can have two consequences: 1. the upstream
model recovers the performance, while the downstream model
fails to recover the performance τd. This could be caused by ei-
ther entangled enhancement, or the downstream model only is
imporved slightly, which is not enough for the state change. 2.

The retraining is successful enough that the downstream model
is also benefited from the improvement, so that it reaches to
the threshold τd. At state (1,0), since only downstream model
d is deteriorated, only successful retraining to the downstream
model could be observed.

Because each state is reachable from other states, this
CTMC is irreducible. For an irreducible CTMC, the state
probabilities reach an asymptotic value as the time goes to
infinity, and this asymptotic value is independent of the initial
condition, and is called steady-state probability. We further
denote the steady-state availability of the system as π = {πi},
i ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. π can be obtained by solving
the system π · Q = 0 with πeT = 1, where Q is the
infinitesimal generator matrix of the CTMC, and eT is the
4-dimension column vector whose elements are 1.

Q =


−λu − λd λu λd 0

c1µu −µu − λd (1− c1)µu λd

µd1 0 −λu − µd1 λu

c2µu µd2 (1− c2)µu −µu − µd2

 .

(2)
Because the final output of the MLS is the downstream

model’s output, state (1, 1) and (0, 1) can be counted as
available states. Thus, the service availability of the system
under the progressive retraining policy is given by Ap =
π(1,1) + π(0,1).

Fig. 3: A CTMC depicting the dynamic of MLS under
conservative retraining policy. The failure rate due to dataset
shift for u is λu, and for d is λd. The recovery rate for u is
µu, and for d, if it is at the state (1,0), it is µd1, and if it is at
the state(0,0), it is µd2. c2 is the coverage factor that at state
(0, 0), the recovery to u resulted in a transition to state (1, 1).

C. Conservative Retraining Policy

Next, we introduce the conservative retraining policy. Under
this policy, ML models are retrained only when observing
the deteriorated system performance (i.e., the performance of
downstream model does not satisfy the required threshold τd).

The two components MLS under the conservative retraining
policy is modeled by the CTMC as shown in Fig. 3. At

TABLE I: Parameter Input

Parameter Description Value
1
λu

Mean time for upstream model performance to drop below threshold τu due to dataset shift 80 days
1
λd

Mean time for downstream model performance to drop below threshold τd due to dataset shift 40 days
1
µu

Mean time for upstream model recovery 20 days
1

µd1
Mean time for downstream model recovery when upstream model satisfies τu 10 days

1
µd2

Mean time for downstream model recovery when upstream model fails to satisfy τu 100 days
c1 The coverage factor of upstream model recovery not making downstream model unavailable 0.75
c2 The coverage factor of upstream model recovery making both upstream model and downstream model available 0.5

(a) Ap and Ac: λu (b) Ap and Ac: λd (c) Ap and Ac: µd1

(d) Ap and Ac: µd2 (e) Ap and Ac: c1 (f) Ap and Ac: c2

Fig. 4: Service Availability regarding to different parameter changes

state (1,1) and (0,1), no retraining is attempted because the
performance of the downstream model satisfies the threshold.
At State (1,0) and (0,0), both upstream and downstream
models are being retrained. Compared to the system in Fig.
2, the transition from (0,1) to (1,1) is removed. However at
the same time, the transition from (0,1) to (1,0), which is the
entangle enhancement that causes the system to fail, is also
removed, which might benefit the system.

As the CTMC is irreducible, we can compute the steady-
state probabilities through the infinitesimal generator:

Q =


−λu − λd λu λd 0

0 −λd 0 λd

µd1 0 −λu − µd1 λu

c2µu µd2 (1− c2)µu −µu − µd2

 . (3)

The service availability under the conservative retraining pol-
icy can again be derived as Ap = π(1,1) + π(0,1).

V. NUMERICAL ANALYSIS

A. Parameters Assignment
Table I presents the input parameter values employed in the

analysis. Due to a lack of literature addressing the temporal

distribution of dataset shift in real-world scenarios, these
values are selected based on assumptions for an MLS oper-
ation. Specifically, the mean time to upstream model failure
attributable to dataset shift is set to 80 days, and the mean
time to upstream model recovery is set to 20 days. For the
downstream model, the mean time to failure is set to 20 days,
and the mean time for downstream model recovery, triggered
when the upstream model reaches the threshold τu, is set to
10 days. The mean time for downstream model recovery when
the upstream model fails to reach τu is configured as 100
days, reflecting the anticipation that such events are unlikely
to occur. The coverage factor of an upstream model recovery
leading to no downstream model failure when downstream
model is already available (denoted as c1) is set to 0.75.
Similarly, the converge factor of an upstream model recovery
resulting in the downstream model reaching τd and upstream
model reaching τu (denoted as c2) is set to 0.5.

B. Sensitivity Analysis

Tables II shows the sensitivities of transition rates and
coverage factors influencing Ap and Ac. The two most sig-
nificant transition rates influencing service availability of the

TABLE II: Scaled Sensitivity for Ap and Ac

Parameter θ SSθ(Ap) SSθ(Ac)
λu -0.0602 -0.0602
λd -0.229 -0.233
µu 0.0802 0.122
µd1 0.194 0.149
µd2 0.0147 0.0218
c1 0.0165 -
c2 0.0238 0.0411

system is λd, followed by µd1. Obviously, the recovery rate
and coverage factor positively impacts service availability,
whereas an increase in the failure rate negatively affects
service availability.

We plot Ap and Ac by varying the values of individual
parameters as shown in Fig. 4. The trends exhibited by the
lines in the figures mostly align with the parameters shown
in the tables. Fig. 4 (a) and (b) show the sensitivity to the
dataset transition rate. In Fig. 4 (b), there is a changing point
where the service availability achieved by the progressive
retraining policy overcomes the conservative retraining policy.
This phenomenon can also be observed in Fig. 4 (c) and
(d), which present the sensitivity to the downstream model
recovery rate at (1,0) and (0,0), respectively. As shown in the
figures, when µd1 becomes large enough, service availability
under the progressive retraining policy exceeds the one un-
der the conservative retraining policy, while µd2 shows the
completely opposite trend, as when it becomes large enough,
service availability under the conservative retraining policy
starts to win over the progressive retraining policy. This can
be attributed to the fact that under the progressive retraining
policy, system is more likely to experience deterioration due to
the entangled enhancement represented by the transition from
(0,1) to (1,0). µd1, as the recovery rate from (1,0) to (1,1), can
possibly revert the bad influence of entangled enhancement,
thus compensating the progressive retraining policy more. On
the other hand, µd2 is the recovery rate from (0,0) to (0,1),
which would benefit service availability under the conservative
retraining policy more, as it is more likely to visit state (0,0) as
a failure state. Fig. 4 (e) shows the sensitivity to the coverage
factor for transition (0,1) to (1,1). When c1 is sufficiently
small, the progressive retraining policy becomes worse than
the conservative policy due to potential negative impacts of the
entangled enhancement. In summary, the efficacy of a system’s
retraining policies in terms of service availability is notably
influenced by λu, µd1, µd2 and c1, which play pivotal roles
in determining the policy that yields a more available system.

VI. CONCLUSION

This study addresses the challenges encountered by MLSs
in the presence of dataset shifts, introducing the concept
of imperfect retraining, with a specific focus on entangled
enhancement. We proposed and evaluated two maintenance
policies, namely the progressive retraining policy and the
conservative retraining policy, to counteract the performance
deterioration due to dataset shift. CTMCs are employed to cap-
ture the dynamics of dataset shift and entangled enhancement

within a two-model MLS. Sensitivity analysis is then applied
to assess the effectiveness of each policy under different
circumstances. The findings indicate that, concerning service
availability, both policies exhibit advantages under distinct
circumstances. Regardless of the policy, the failure rate of
the downstream model is of greatest significance, and hence
reducing the failure rate is the primary consideration for
improving availability.

REFERENCES

[1] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla, and
F. Herrera, “A unifying view on dataset shift in classification,” Pattern
Recognition, vol. 45, no. 1, pp. 521-530, 2012.

[2] R. Wu, C. Guo, A. Hannun, and L. van der Maaten, “Fixes that fail:
Self-defeating improvements in machine-learning systems,” in Advances
in Neural Information Processing Systems, vol. 34, pp. 11745–11756,
2021.

[3] B. Nushi, E. Kamar, E. Horvitz, and D. Kossmann, “On human intellect
and machine failures: Troubleshooting integrative machine learning sys-
tems,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 1, pp. 1017-1025, 2017.

[4] J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer and N.D.
Lawrence, Dataset Shift in Machine Learning. The MIT Press, pp. 3–28,
2009.

[5] K. Wang, S. Zhou, C.A. Fu, J.X. Yu, F. Jeffrey and X. Yu, “Mining
changes of classification by correspondence tracing,” in Proceedings of
the 2003 SIAM International Conference on Data Mining, pp. 95–106,
2003.

[6] Y. Yang, X. Wu, and X. Zhu, “Conceptual equivalence for contrast
mining in classification learning,” Data & Knowledge Engineering, vol.
67, no. 3, pp. 413–429, 2008.

[7] D.A. Cieslak and N.V. Chawla, “A framework for monitoring classi-
fiers’ performance: when and why failure occurs?” in Knowledge and
Information Systems, vol. 18, no. 1, pp. 83–108, 2009.

[8] K. S. Trivedi and A. Bobbio, Reliability and availability engineering:
modeling, analysis, and applications. Cambridge University Press, 2017.

[9] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, pp. 2503-2511, 2015.

[10] A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A.
Beutel, C. Chen, J. Deaton, J. Eisenstein, M. D. Hoffman et al., “Un-
derspecification presents challenges for credibility in modern machine
learning,” The Journal of Machine Learning Research, vol. 23, no. 1,
pp. 10237–10297, 2022.

[11] F. Machida, J. Xiang, K. Tadano and Y. Maeno, “Lifetime Extension
of Software Execution Subject to Aging,” in IEEE Transactions on
Reliability, vol. 66, no. 1, pp. 123-134, 2017.

[12] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollãr,
J. Gao, X. He, M. Mitchell, J. C. Platt et al., “From captions to visual
concepts and back,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1473–1482, 2015.

[13] L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M.
Chickering, E. Portugaly, D. Ray, P. Simard, and E. Snelson, “Counter-
factual reasoning and learning systems: The example of computational
advertising.” Journal of Machine Learning Research, vol. 14, no. 11, pp.
3207-3260, 2013.

[14] D. J. Hurst, “Operational availability modeling for risk and impact
analysis,” in Annual Reliability and Maintainability Symposium 1995
Proceedings. IEEE, pp. 391–396, 1995.

[15] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection and
subsequent selection bias in performance evaluation,” The Journal of
Machine Learning Research, vol. 11, pp. 2079–2107, 2010.

[16] J. Hron, K. Krauth, M. Jordan, and N. Kilbertus, “On component
interactions in two-stage recommender systems,” Advances in neural
information processing systems, vol. 34, pp. 2744–2757, 2021.

