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Abstract—With the widespread application of Uncrewed Aerial
Vehicles (UAVs) in various real-world surveillance scenarios, the
quality analysis of UAV-based monitoring systems has become
an emergent challenge. Previous model-based studies often made
theoretical assumptions to estimate the performance and avail-
ability of UAV computing systems, without detailed considera-
tions of the interaction between UAVs and fog computing nodes,
as well as computation steps of object detection algorithms. In
this paper, we propose Stochastic Reward Nets (SRNs) to capture
computational behavior and analyze performance, availability,
and performability metrics of a UAV system that utilizes com-
putation offloading. In order to obtain more realistic parameters
for model-based analysis, we conduct empirical experiments
using an edge computing device to emulate real-time object
detection on a UAV. We measure the throughput of real-time
object detection process in three stages by experiments that are
fed into parameters for numerical analysis on the proposed
model. Through the sensitivity analysis, we demonstrate the
impact of different computation modes and video resolutions
on performance and availability metrics, providing insights for
improving UAV system design and operation.

Keywords—Object detection, Performability, Stochastic reward
nets, Uncrewed aerial vehicle.

I. INTRODUCTION

In recent years, Uncrewed Aerial Vehicles (UAVs), also
known as drones, have garnered widespread attention from
both practitioners and researchers due to their advanced
functionalities, scalability in hardware and software, user-
friendly operation, and cost-effectiveness [1], [2]. However,
UAV systems are susceptible to various factors impacting
their performance. It is essential to understand how system
performance, such as service availability and task throughput,
are influenced by network accessibility, interactions with other
computing nodes, and the resolutions of video frames.

Performability analysis and design of UAV-based systems
are becoming a challenging issue. Performability is the com-
posite measure of performance and availability, which can be
quantitatively evaluated through the performance and availabil-
ity models and measurements [3]. These quality metrics are
often intercorrelated and subject to trade-off relations under
operation environments [4]. Given that UAVs, as mobile edge
devices, have limited computing resources and battery life,
enhancing performability becomes a fundamental requirement
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because it directly impacts mission success, operational effi-
ciency, and overall system effectiveness.

One major limitation of UAVs is their restricted resources.
To deal with this, computation offloading is commonly used.
This technique involves migrating tasks from the UAV’s
onboard resources to remote servers [5]. While performance
models play a crucial role in evaluating the effects of offload-
ing [6]-[8], prior research often lacks real-world data, relying
on hypothetical values, further limiting their applicability and
accuracy.

In this paper, we use Stochastic Reward Nets (SRNs) [9]
to develop a model for UAV-based monitoring systems, which
comprehensively incorporates the behaviors of object detection
algorithms and task offloading between the drone and the
fog node. Unlike previous studies, we conduct experiments
to profile object detection algorithm performance, enhancing
parameter estimation accuracy. Evaluating YOLO (You Only
Look Once) v5 [10] and YOLOvV3 [11] on edge and fog pro-
cessing modes using emulated devices, we collect performance
metrics for SRN parameterization. Our numerical sensitivity
analysis indicates that the choice of different computation
modes and video resolutions significantly influences the ser-
vice availability, service throughput, and performability of the
UAV system, all of which are affected by the failure rate of
the computing process.

We make the following contributions in this paper:

o Introduction of comprehensive SRN models for analyzing
performance and availability of real-time object detection
system on UAVs with a fog node serving as an offloading
Server.

o Experimental evaluation of two real-time object detec-
tion algorithms on an edge computing device to obtain
realistic parameter values for numerical analysis on the
proposed models.

« Insightful sensitivity analysis results that show the impact
of computation mode and video resolution choices on
performance metrics such as service availability, system
throughput, the frame drop ratio, and performability.

The rest of the paper is organized as follows. Section II
describes related work. Section III introduces the target sys-
tem. Section I'V presents the SRNs to evaluate the performance
and availability considering two computation modes. Section



V shows our experimental results on an emulated computing
device. Section VI illustrates results of sensitivity analysis
about two computation mode. Finally, in Section VII, we
provide our conclusion.

II. RELATED WORK

Recent studies exploit object detection in UAV surveillance
systems using diverse models and hardware implementations.
Ajith et al. [12] introduced a unique hybrid deep learning
model for object recognition that can aid in search and rescue
operations. Chen et al. [13] presented a system that combines
an FPGA and a drone with a neural-network engine for real-
time object detection, achieving high FPS and lower power
consumption. While these studies improved the performance
of object detection in UAYV, the interactions between a UAV,
a control terminal, and a node to offload the object detection
tasks were not considered. Our experiments and model-based
study follow these interactions to evaluate the system perfor-
mance.

Many researchers have evaluated the performance of UAV
application systems. Wang et al. [14] assessed the perfor-
mance and operation failure rate of agricultural drones. The
experimental statistical results showed that the drone made
failure about 4% of the time, and the net working time was
only 30%, revealing the inefficiency of monitoring caused by
unavailability. Petritoli et al. [15] addressed reliability issues
in UAV design and identified constraints to ensure appropriate
preventive maintenance intervals. These studies used statistical
analysis or probability functions to evaluate the performance of
UAVs. In our study, we introduce a comprehensive SRN-based
performability model for a fog-assisted drone monitoring
system to model and analyze the performance under different
computational modes.

Sensitivity analysis is one of the essential methods to
analyze the system performance bottleneck. Existing studies
have utilized Stochastic Petri nets (SPNs) to model systems
and analyze the sensitivity of system parameters to their
performance. Zhang et al. [7] identified a bottleneck in sys-
tem performance caused by multiple UAVs competing for
fog node computing resources, then proposed improvement
suggestions based on sensitivity analysis results. Sabino et
al. [16] proposed a fire monitoring system using drones and
edge computing, assessing its structure with SPNs to evaluate
the impacts of queue capacity, processor cores, and service
duration. In contrast to these works, our study examines the
detailed performance of each step in object detection under
two computation modes with different video resolutions and
quantifies system performability.

III. UAV-BASED MONITORING SYSTEM

In this section, we outline our target system configuration
and provide a general overview of the steps involved in a
single-stage object detector.

A. System configuration

In our study, we examine a scenario involving a UAV
equipped with a camera and a computational unit for video
processing. During its flight, the UAV has the option to
perform local object detection processing onboard or offload
the captured video footage to a computing node for processing.
We assume that computing nodes within a fog computing
infrastructure is accessible through wireless networks [8], as
shown in Figure 1. Upon allocation of an available fog node,
the UAV establishes a connection and transmits the image data
for processing, with the resulting object detection outcome
returned to the UAV. It is important to note that successful
offloading relies on a stable wireless communication link. In
cases where environmental conditions disrupt communication
stability, offloading becomes impractical.
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Fig. 1: Drone computation system

B. General steps of a single-stage object detector

In recent years, advancements in single-stage detectors have
led to their performance in target detection tasks approaching
or even surpassing that of two-stage detectors [17] in real-time
object detection, such as the YOLO series [18] and Efficient-
Det [19]. The general steps of a single-stage object detector
can be divided into three stages, preprocessing, inference and
NMS (Non-Maximum Suppression):

Preprocessing: The input image undergoes resize and nor-
malization, with optional data augmentation techniques like
random cropping and flipping.

Inference: Convolutional Neural Networks (CNNs) extract
features from the preprocessed image, enabling object de-
tection and classification, which generate candidate bounding
boxes. Some detectors, such as CenterNet [20], may bypass
the NMS stage if candidate boxes are directly output.

NMS Stage: NMS is applied to filter and merge overlapping
candidate bounding boxes, thereby obtaining the final detec-
tion results.

While specific implementation details may vary among
single-stage detectors, they all follow this fundamental pro-
cess. In our study, we employ YOLOv3-tiny [11] and
YOLOvS5s [10] as experimental examples.

IV. PROPSED MODEL

This section details the SRNs for evaluating the performa-
bility of an image processing and task offloading system
considering one UAV and one fog node. First, we briefly
introduce the formalism of SRNs.



A. Stochastic Reward Nets (SRNs)

Petri nets are formalisms for modeling different types of
systems, from cyber-physical systems to communication proto-
cols. A Petri net is a directed bipartite graph comprised of two
types of nodes: places, represented by circles, and transitions,
represented by rectangles (see Figure 2). Places are connected
to transitions via incoming or outgoing arcs. A marking of a
Petri net is represented by the number of tokens in its places,
with each marking corresponding to a specific system state.
State transitions are indicated by changes in marking resulting
from the firing of a transition. A transition becomes enabled
when all input places have the required number of tokens.
Upon firing, a transition removes tokens from its input places
based on specified multiplicities and deposits new tokens into
its output places.

Inhibitor arcs are special arcs used to restrict transition
enablement conditions. As depicted in Figure 2, an inhibitor
arc is illustrated as a line ending in a small circle. A transition
remains disabled when a limited number of tokens is present
in the connected place via an inhibitor arc, here is one token.

The original Petri net model lacks the concept of time,
which is essential for analyzing performance and availability.
The introduction of time results in a type of Petri net called
timed Petri nets, with one specific variant used in this study
being SRNs [22]. Within SRNs, two types of transitions
are considered: timed and immediate. Timed transitions are
associated with exponentially distributed firing times, while
immediate transitions fire instantaneously. Additionally, SRNs
incorporate guard functions to manage transition conditions
and reward functions to facilitate the computation of perfor-
mance measures. Software packages such as SPNP [21] and
SHARPE [22] support the solution of SRNs.

In this paper, we assume that all timed transitions have
exponentially distributed firing times. Our model is extended
from the SRN originally presented in [6]. Further details about
SRN formalism, solution techniques and modeling examples
can be found in [23].
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Fig. 2: An example of Petri Net with an inhibitor arc

B. Performability computation

Performability, which combines performance and avail-
ability, provides a comprehensive evaluation of a system’s
overall operational effectiveness. Many practical application
systems require not only high-performance but also need
high-availability during their operation. A high performance
but unavailable system may not meet users’ expectations,
while a highly available system with low performance is not
acceptable either [8].

In the context of a drone image processing system, our focus
lies on evaluating the request processing capability during
its operational duration. The average request processing rate
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Fig. 3: SRN for the edge processing mode

throughout the available period serves as a key performability
metric of interest. Thus, we follow the definition of performa-
bility presented in [6]. Let s be a state of a drone system and
denote p(s) as the performance measure (which, in this work,
refers to task throughput) when the system is in state s. The
performability measure can be defined as

P, = / _ PEF() (1)

where A represents the set of states where the system is
available and F'(s) is the probability distribution of the random
variable for the state s. To compute the value of P,, the ex-
pected performance for each state s, as well as the probability
of the state s needs to be estimated. These values are not
easily given from the system specification since state changes
are induced by environmental uncertainties. Therefore, we
introduce stochastic models to capture the state transitions of
the system under environmental uncertainties.

C. Edge processing (EP) model

Fig 3 presents the SRN for the drone image processing
system, which includes an edge device, client node model,
and wireless model

The edge model shown in Fig 3a represents the states of
the job processing on the edge device. Tyyiva represent the
obtained video stream with rate ~,,.,.. Incoming video frames
are saved in Pyueye, but the inhibitor arc ensures that only two



tokens are in memory waiting for processor allocation for the
subsequent object detection stage. Video frames that cannot be
processed in time due to insufficient system performance will
be discarded, that is, Tjyiscara fires. Therefore, what is retained
in Pyeue are frames processed for real-time video streaming
with rate vg;sc.

Initially, the edge is idle, represented by a token in Pygje.
Image processing requests, modeled by a Poisson process with
rate ;,, transition the system to the preprocessing state, a
token is deposited in Py_pr, upon firing the Tijop. Subsequent
transitions Ty.prep, La-int, and Tynms Tepresent preprocessing,
inference, and non-maximum suppression stages, respectively.
Transition rates Vg prep, Vd-inf, and Vg.nms represent the process-
ing speeds for each stage: the preprocessing, inference, and
NMS, respectively.

During the operation, the computation process may en-
counter a failure. Failures during processing are accounted
for by transitions Tyg,; and Tygp, triggered in idle and
processing state failures, respectively. The process recovery
transition Ty ..y fires when recovering a failure with rate 4.

The client node model in Figure 3b captures the failure and
recovery behavior of the client that receives processing results
from the drone. Although the client state does not affect the
drone’s process, users cannot access results when the client is
unavailable. Hence, we consider the client’s state to calculate
service availability. A token in B, is removed when T, g
fires, that is a node failure event. Meanwhile, a token in P,_ga
is removed when T, . fires, representing node recovery event.
We assign failure rate \,, and recovery rate (., to T} i and
Threc, Tespectively.

The wireless link model in Figure 3c represents the com-
munication link state between the drone and the client. Even
if both operate properly, link disconnection causes system
unavailability. A token in F.,, enables Tj.4own, representing
link disconnection. While a token in Pigown €nables Tjp,
representing link reconnection. Link failure and reconnection
rates are A; and p;, respectively.

In this paper, we consider the three performance metrics for
EP mode.

Service availability is defined as the probability of the
system being in non-failure states. In the edge processing
mode, the service is available unless a token is deposited in
Pataits Prrait and B gown-

Service throughput is also considered a performance mea-
sure of an image processing system and can be computed by
the product of the probability of the processing state and the
corresponding service rate [6]. As the throughput of object
detection process in a failure-free execution can be measured
by FPS (Frames Per Second) through the experiments, we
use the collected values to estimate the effective service rates
of the edge node and the fog node. By breaking down the
processing time into individual stages and measuring their
FPSs, we gain insights into the performance bottlenecks of
each stage. In our SRN, the expected service rate is the rate
of Td-job~
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Fig. 4: SRN for the fog processing mode

Frame drop ratio is defined as the proportion of discarded
frames to the total number of frames requested. Under different
factors impacts, this value will represent the completion rate
of the service.

To compute the above performance metrics, we define the
reward functions as shown in Table I.

D. Fog processing (FP) model

For the fog computing mode, we consider one UAV and
one fog node that are used when computation offloading is
requested. Figure 4 shows the SRN that consists of interrelated
subnets representing the edge node, fog node, and wireless
link for communication. Table II shows the guard functions
assigned to the transitions of the subnets.

In the fog offloading mode, the edge model includes the
place Piofoad to represent the state to request offloading.
When a token is deposited in Pyiqe after firing and the
guard condition gd_off is met, the transition Tj o, is enabled
and a new token is deposited in Pyoffoad With rate vgp..
Subsequently, when the conditions of the guard function gf_job
are met, and T,yivq i fired, indicating that a task has been sent
to the fog node.

When the token in Pyeye is non-zero, and the condition of
the guard function gd_comp is met, the immediate transition
taoff 1S enabled, which means that some tasks have been
offloaded to the fog node. After immediate transition tq o
fires, the token in Pjof0ad 1S removed, and a new token is
generated in Py g, indicating that data has been sent to the



TABLE I: Reward function for SRNs

Measure Function

Edge processing

Service availability
Service throughput
Frame drop rate

prob(# Puidie == 1) * ~in (i.€. rate("Tyjob™))
rate("Tyiscard”)/rate”" Larrival ™)

(#Pd-idle ==1or #Pd-prep ==1or #Pd_lnf ==1or #Pd-NMS == 1) and (#Pn-up == 1) and (#Pl-up == 1)) then 1 else 0

Fog processsing

Service availability and (#Pyyp == 1)) then 1 else 0

prob(# Prigie == 1) * vin (i.e. rate("Ttjob”))
rate("Taiscard”)/1ate” Larriva ")

Service throughput
Frame drop ratio

(#Paidle == 1 or #Pyoffioad == 1) and (#Prigie == 1 OF # Prprep == 1 or # Py == 1 or #Prnms == 1))

fog node and the drone returns to the idle state. We assume
that the average time to start an task transmission in the fog
node due to communication delay is § in Tyyiya. During the
fog node processing, the process may finish the job or fail,
which are represented by the transitions Tt prep, Tr.Nnms OF Tt-gails
respectively.

For the fog processing model, we consider service avail-
ability, throughput and frame drop ratio as the performance
metrics. The reward functions for these metrics are defined as
shown in Table II. For the Service availability, the service is
available unless a token is deposited in Py g1, Pr.fai1 and Plgown.
Service throughput is measured by the expected service rate
of Tf_job.

TABLE II: Guard function for the fog offloading mode

Name Transition Function

gd_off Titjob if (#FPl.yp==1) then 1 else 0
gf_job Tartival if (#Poffi0aa==1) then 1 else 0
gd_comp td-off if (#Pgueue>0) then 1 else 0

V. EXPERIMENT

The SRN models presented in the previous section need
parameter values for numerical analysis. To estimate a real-
istic parameter values, we conduct experiments and collect
performance data of object detection algorithms.

A. Experiment design

1) Flight simulation & record: We use AirSim to create
a simulation environment with featuring mountains and UAV
models. In the simulated environment covering 30,000 square
meters, we deployed 16 deer and 14 wolf models. The objec-
tive of the UAV flights is to conduct surveillance of animal
activities and monitor the ecological environment within the
specified range. Video streams are captured by the camera on
the UAV in AirSim.

While the video we recorded from AirSim had a reso-
lution of FHD (1980x1080) and ran at 30 FPS, the video
stream is rebroadcasted in the RTMP (Real Time Messaging
Protocol) server at various resolutions, including FHD, and
HVGA (480x270) resolution, with a frequency of 30 FPS for
each experiment. One of our flights lasts approximately six
minutes. Figure 5 shows some sample images of the simulated
environment captured by the camera.

2) Experimental setup: To replicate the animal detection
process on the UAV, we set up an experimental system
consisting of a computing device serving as a video capture
terminal and an RTMP server for streaming recorded videos.
Connected to a local area network via Wi-Fi 802.11ax, a PC
acts as a fog node to evaluate the performance of the offloading
mode, denoted as fog processing.

For image processing on the UAV, we emulate it using a
Raspberry Pi 4B as an edge device, powered by a battery
supply to simulate real-world conditions. This computational
mode is referred to as edge processing. The CPU processing
mode is employed for image processing on the Raspberry Pi,
considering its shared memory architecture and higher CPU
frequency compared to the GPU. Similarly, to ensure a fair
comparison of performance, we employ CPU-based detection
processing on the fog node as well.

Figure 6 illustrates the system configuration utilized in our
experiment. The hardware and software configurations are
detailed as follows.

« Edge Node: Raspberry Pi 4B with Debian GNU/LINUX
11 OS;

o Edge node external power supply: PiSugar 3 Plus,
5000mAh;

o Fog Node: ASUS ROG Strix G512LV314 with Windows
10 Home OS;

e RTMP server/Video collector: ASUS VivoMini VC65
with Ubuntu 18.04.6 TLS.

y g YOLOVS5s RTMP server/ g YOLOVS5s
Edge Node i Fog Node
¢ YOLOv3-tiny Vde0 collector € YOLOV3-tiny
=3 =
s, |e=mo| | —
= |[=9|«—
u o '
— a—
Edge processing Offloading processing

Fig. 6: Experimental configuration for performance measure-
ments



Next, the performance of a real-time object detection system
are measured on the edge device and the fog node computer.
During the execution of the target detection algorithm on the
input video stream, we recorded the processing time for each
frame across three stages of the image processing pipeline:
preprocessing, inference, and NMS.

B. Edge processing

We conduct three experiments for each video input resolu-
tion (FHD and HVGA) and take the average of the observed
values. The results are summarized in Tables III and IV.

As anticipated, the FPS of overall processing increases
with lower resolution images, with HVGA resolution cases
yielding the highest FPS. During object detection processing,
each frame is processed in a fraction of a second. If the
processing of a frame extends beyond the arrival of the
subsequent frame, it necessitates additional time to process
the subsequent frame. Consequently, FPS diminishes with
larger image sizes, requiring prolonged processing durations.
Moreover, the processing speed is observed to be higher
when employing YOLOv3 compared to YOLOvVS5. The smaller
model size of YOLOv3-tiny contributes to this enhancement,
although without explicit consideration of potential accuracy
rate reductions. In subsequent performability analyses, we
solely examine the impact of changes in system performance
on processing speed.

TABLE III: Object detection performance in EP (YOLOVS)

Processing

Resolution speed Preprocessing  Inference NMS Total
FLD Time/ms 13.7467 3853.24 3.3339  3870.321
FPS 72.7447 0.2595  299.9453 0.2584
HVGA Time/ms 8.4625 1124.667 1.3083  1134.438
FPS 118.1687 0.8892  764.3471 0.8815

TABLE IV: Object detection performance in EP (YOLOv3)

Resolution Pr(s)lc)zizmg Preprocessing  Inference NMS Total
FHD Time/ms 144057  1952.3191 7.5463  1974.2711
FPS 69.4170 0.5122  132.5158 0.5065
HVGA Time/ms 7.9920 723.2023 2.0202 733.2144
FPS 125.1258 1.3827  495.0046 1.3639

C. Fog processing

Subsequently, we execute real-time video detection by re-
broadcasting the recorded video to the fog node through the
RTMP server, with two different resolutions of video streams.

The performance outcomes of the object detection process
at the fog node under stable network conditions are detailed
in Table V and VI. Notably, the FPS values exhibit significant
increase compared to those observed in EP mode, attributable
to the higher computational capabilities of the fog node. Sim-
ilarly, when we use YOLOV3, the processing speed surpasses
that of YOLOVS. In contrast to the edge processing mode, no
discernible correlations between image resolutions and FPS
values are observed in the fog processing mode.

TABLE V: Object detection performance in FP (YOLOVS)

Processing

Resolution speed Preprocessing  Inference NMS Total
FHD Time/ms 0.6881 102.1139 0.3476  103.1496
FPS 1453.1813 9.7930  2877.1140 9.6947
HVGA Time/ms 0.8237 101.0870 0.8159  102.7265
FPS 2162.4353 9.8697  3698.6470 9.7989

TABLE VI: Object detection performance in FP (YOLOV3)

Resolution Pr:;zzzng Preprocessing  Inference NMS Total
FHD Time/ms 0.6368 69.0959 0.5639  70.2966
FPS 1570.3214 144726 1773.4900  14.2254
HVGA Time/ms 0.9919 64.0807 0.5292  65.6019
FPS 2393.0554 16.0307 1861.1170  15.7890

D. Comparison

We segmented an object detection algorithm into three
stages and measured the average speeds. Regardless of the
computing device, the preprocessing speeds of HVGA input
by YOLOv5s and YOLOvV3-tiny were approximately 1.5 to
1.8 times faster than those of FHD input. This ratio tends
to remain consistent, as the time complexity of the image
preprocessing stage can be considered linear (O(n)). Overall,
the preprocessing speed of the YOLOv3-tiny model is slightly
faster than that of YOLOVSs, possibly due to optimizations for
hardware.

During the inference stage, YOLOv3-tiny exhibits higher
speeds than YOLOvSs, as the model parameters are smaller,
making it more suitable for edge device utilization. However,
due to the limited resources in the edge node, there is no
significant difference in inference speeds between the two
algorithms for both resolutions. Meanwhile, the difference
in inference speeds in the fog node is significant. Similar
observations are also found in the NMS stage.

VI. NUMERICAL ANALYSIS

In this section, we conduct numerical experiments with the
estimated performance parameter values from the experiments.
We compare the service availability, service throughput, frame
drop ratio, and performability achieved by two computation
modes with two different video resolutions.

A. Parameterization

We follow the baseline parameters used in the previous
study [6]. Table VII shows the parameters and their default
values used in the experiments. The process can fail more
frequently in the processing states. Therefore the model has
also transitions Ty gy and Tj gy that represent the process
failure events during the job execution in the edge processing
mode and fog offloading mode, respectively. We vary the Ay
in range of [0, 0.1] (1/hour). The failure rate in the processing
states are set to 1.5)\4, as it should be larger than that in the
idle state. For the failure rate of the fog node during idle
and processing states, fixed default values are employed. For
the service rate, we use the collected data of FPSs from the
experiments.



TABLE VII: Parameters for Numerical Experiment

Variable Description Value
Task arrival rate 30
Yarr in edge processing
Yin Processing request rate 2400
Preprocessing rate on an Vi.inf i
Vd-prep edge device Table III and IV
Vd-inf Inference rate on an edge device ;Zi;’l’:’h}nan 41V
. Va-NMs in
Vd-NMS NMS rate on an edge device Table 1II and IV
Un-prep Preprocessing rate on a fog node ?gbzfé f \;nan 4 VI
Vn-inf Inference rate on a fog node ?ggi:’{,lzn 4 VI
Un-NMS in
Vn-nms ~ NMS rate on a fog node Table V and VI
Process recovery rate
pa on a drone 3 161
Process recovery rate
Hn on a fog node 2 16]
) Task transmission rate 7200 [6]

Failure rate on a fog node

An in the idle state 0.000462963 [6]
Ao Eallure rate on a fog node 0.001388889 [6]
in the processing state
Communication link
A disconnection rate 0.5 [6]
9 Communication link 360 [6]

reconnection rate

B. Sensitivity analysis

Figures 7 and 8 show the results of sensitivity analysis of \y
on the service availability, task throughput, frame drop ratio,
and performability for YOLOvVS and YOLOV3, respectively. In
each plot, we compare the results of two computation modes
with different video resolutions.

As shown in Figures 7a and 8a, regardless of the choice of
detector, when the failure rate at the edge node is lower than
that of the fog node, the service availability of EP tends to
be slightly higher than FP. However, when the the failure rate
increases, the advantages of FP mode become more obvious,
and it achieves higher availability compared to EP. In terms of
resolution, there is not much difference in availability between
the same computing modes.

Regarding throughput, as illustrated in Figures 7b and 8b,
regardless of the algorithm employed, the variation trends are
primarily evident across different computation modes rather
than the choice of resolution. Specifically, in the case of FP
mode with YOLOVS, the FPS remains relatively consistent
across both resolutions, exhibiting a linear decline as the
failure rate increases. On the other hand, in the EP mode, the
decline is less pronounced. With YOLOV3, distinct FPS values
are observed across both resolutions within the FP mode,
yet the downward trend remains consistent as the failure rate
increases. Similarly, the EP mode displays a similar trend as
in the case of YOLOVS, although the changes are less distinct.

Regarding the frame drop ratio, as illustrated in Figures
7c and 8c, both algorithms demonstrate a declining trend in

both resolutions. Specifically, under both algorithms, increase
in the failure rate results in a slight decrease in the frame drop
ratio for EP scenarios, while the ratio in FP scenarios is less
discernible.

In terms of performability, as depicted in Figures 7d and
8d, the observed trend is similar to the trend of throughput.
Specifically, in the FP mode, performability exhibits a linear
decline with increasing failure rates, regardless of video reso-
lutions. In contrast, the performability of EP appears to remain
relatively stable.

In short, failure rates primarily impact service availability,
while also influencing service throughput, frame drop ratio and
performability. Overall, in our parameter setting, the FP mode
demonstrates advantages, achieving higher service availability,
increased throughput, greater task handling capacity.

VII. CONCLUSION

In this study, we proposed SRN models to analyze the
performability of UAV-based monitoring systems, particularly
focusing on the real-time object detection process and task
offloading between drones and fog nodes. To improve the
accuracy of model-based performance estimation, we incor-
porated empirical data from real experiments using an edge
device and a PC. Through comprehensive experiments using
both YOLOVS and YOLOV3 as object detection models, we
collected the performance data of EP and FP computation
modes that were subsequently fed into our proposed SRN
models. The numerical results on our models revealed impacts
of process failure rates on service availability, throughput,
frame drop ratio and overall system performability across
different computation modes and video resolutions. When the
process failure rate of the edge node is lower than that of the
fog node, EP can achieve higher service availability to meet
user demands.

This research holds practical relevance across various in-
dustries where efficient drone surveillance systems are crucial.
Industries such as agriculture, wildlife conservation, security,
and infrastructure management stand to benefit significantly
from the improved performance and availability offered by our
approach. Additionally, integrating empirical data into perfor-
mance modeling enables more precise analysis and informed
decision-making, enhancing the effectiveness of UAV-based
monitoring systems. Future work will focus on refining the
SRN model, exploring factors like detection accuracy and
battery life, and expanding the analysis parameters to create a
comprehensive quality analysis and design framework.
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