N-version Machine Learning Models for Safety
Critical Systems

Fumio Machida
Department of Computer Science
University of Tsukuba
Ibaraki, Japan
machida@cs.tsukuba.ac.jp

Abstract— Quality control of machine learning systems is a
fundamental challenge in industries to provide intelligent
services or products using machine learning. While recent
advances in machine learning algorithms substantially improve
the performance of intelligent tasks such as object recognition,
their outputs are essentially stochastic and very sensitive to
input data. Such an output uncertainty is a big obstacle to
ensure the quality of safety critical applications like autonomous
vehicle and hence architectural design to mitigate the impact of
error output becomes a great importance. In this paper, we
propose N-version machine learning architecture that aims to
improve system reliability against probabilistic outputs of
individual machine learning modules. The key idea of this
architecture is exploiting two kinds of diversities; input diversity
and model diversity. Qur study first formally defines these
diversity metrics and analytically shows the improved reliability
by N-version machine learning architecture. Since we treat a
machine learning module as a black-box, the proposed
architecture and the reliability property are generally
applicable to any machine learning algorithms and applications.

Keywords—design diversity, machine learning, N-version
programming, reliability, safety

I. INTRODUCTION

Recent advances of machine learning algorithms with
increased computing power and available big data further
expand the applications of machine learning systems.
Computer vision, voice recognition and machine translation
now mostly use deep neural networks, as their performances
overreach the limit of conventional algorithms and even
human capability. Machine learning applications are expected
not only for improving existing products or services, but also
for as a key enabler of new innovative systems such as
autonomous vehicles and advanced medical diagnostic tools.

An emergent challenge of system providers is quality
control of the product or service uses machine learning. In
particular for industries developing safety-critical applications,
quality assurance is essential for their businesses. Unlike any
software program that is coded by deterministic logic, the
output of machine learning modules are generally uncertain.
A machine learning module uses a model constructed from a
training data set through a specific algorithm. The output of
the module completely depends on the trained model and how
well the learning algorithm extract the features of the data.
Moreover, in many practical applications, input data to
machine learning module is most likely not included in the
training data set. Therefore, system provider is not able to
ensure the complete correctness of machine learning module’s
output in user environment where unexpected input occurs
sporadically. This uncertainty causes a critical threat to
machine learning models. A cyber-attack can fool the machine
learning system to output error by malicious input, which is
now commonly known as adversarial example [1].

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A number of studies are conducted for developing robust
machine learning algorithms against adversarial examples.
The robustness of machine learning algorithm can be
increased in training phase by intentionally incorporating
adversarial examples in the training data set [1]. Existence of
adversarial examples for deep neural network models can be
verified by safety verification techniques [2]. While these
studies intend to increase the robustness of a machine learning
module, they do not guarantee the complete reliability of the
system. System reliability is affected not only by adversarial
examples, but also by other factors such as errors in the labels
of training data sets and/or algorithm implementations.
System providers need to premise the occurrence of error
outputs but low probability and should contemplate the
reliable system design to reduce the impact of output errors.

In this paper, we propose a reliable system architecture
using N-version machine learning models whose output may
not be correct. Our focus is not on the training of robust
machine learning models, but on a reliable system processing
with multiple machine learning modules. Different machine
learning models can be used in the same system so as to
improve the reliability of the system output. The key of
reliability enhancement is delivered through the two kinds of
diversities employed in the system architecture, namely mode!
diversity and input diversity. Model diversity is achieved by
using different machine learning models built from different
algorithms, parameters, training data sets, developers and/or
programming languages. The multi-version approaches are
also used for test of machine learning model [3]. In contrast,
we use multi-version models to increase the system reliability
in the operation. In system operation, the difference of input
is also an important factor of diversity. Input diversity is
achieved by taking different samples for the input to machine
learning models. For instance, an autonomous vehicle equips
two cameras with different angle may produce two different
image data for the recognition task at a certain time and place.
Even if a machine learning model outputs an error with one
input (e.g., fails to recognize an object), the model can output
correct answer with the other input depending on the degree
of diversity between two inputs. We formally define these two
kinds of diversities and analytically show the improved
reliability of N-version machine learning architecture in
different configurations. A preliminary numerical example
exhibits that the architecture exploiting both the diversities
achieve the best reliability in most cases.

II. N-VERSION MACHINE LEARNING MODEL

N-version machine learning model is analogous to N-
version programming that is well-known software fault-
tolerant technique. N-version programming is originally
defined as “the independent generation of N > 2 functionally
equivalent programs from the same initial specification” [4].
Unlike hardware reliability, redundant configuration of the

same software component do not improve the system
reliability because the same software implementation can
produce the same error output by the software faults. Provided
that complete removal of software faults from a software
component is extremely difficult, N-version software
programming offers the tolerance to software faults by
multiple implementations of the same software specification
by changing development teams, programming languages,
libraries and tools. Except fundamental errors in specification,
any errors generated in software development process can be
covered by different implementations that can lead to
improved system reliability.

Machine learning model generally has a similar property
to software component. The output reliability cannot be
improved by the redundant use of the same machine learning
model as it produces the same error by the same input.
Therefore, in this paper, we consider the variant of N-version
programing for machine learning models. The differences
between machine learning model and general software
component are twofold as follows. First, machine learning
model is constructed by training from examples, while
software component is developed from a specification. The
sources of errors in machine learning model mainly come
from the algorithm and training data sets instead of software
faults. Second, the output of machine learning model is
stochastic and sensitive to the input data, while the output of
software component is generally deterministic as specified in
advance. A single machine learning model may behave
differently for different input from the same sample space
associated with the same expected outcome. This implies that
machine learning model can output correct answer with
different input even if it outputs error by a certain input. This
difference gives us a unique challenge of N-version machine
learning model; how can we exploit the different kinds of
diversities in the architecture of machine learning system.
Hereafter, we use the term model diversity as the diversity
inherited from machine learning model itself, and input
diversity as the diversity comes from different input data. The
formal definition of these diversities are explained in Section
III. In the following, we present some elemental but effective
architecture of N-version machine learning models that aims
to improve the reliability of system output.

(a) Two-version architecture

DMSI
. . N

(b) Three-version architecture

DMDI

TMSI TMTI
%
x;
X3

(¢) Single-model architecture
SMDI

Figure 1. Variations of N-version machine learning architecture

A. Two-version architecture

When we have two versions of machine learning models
for processing the same task (e.g., object recognition from an
image data), there are at least two options to configure two
modules in a system architecture (See Figure 1(a)). Double
model with single input (DMSI) system simply exploits model
diversity such that each module employs a different model.
The system is assumed to fail when either module do not
output expected answer. An error output of one module may
be covered by a correct output by another module using
different model and thereby the reliability of system output
can increase. Since two models are constructed for the same
purpose, the probability of simultaneous errors can be high,
but the model diversity helps reduce such a probability. On the
other hand, double model with double input (DMDI) system
exploits input diversity besides model diversity by using
different inputs from the same sample space associated with
the ground truth. The system is assumed to fail when both of
two modules do not output expected answers (i.e, the ground
truth). Even if both models result in error output by an input,
either one of the models can output correct answer by another
input. Intuitively, the output reliability of DMDI is better than
the reliability of DMSI, since DMDI can benefit input
diversity as well as model diversity. We will formally discuss
this point in Section III.

B. Three-version architecture

Two-version architecture can be extended to three-version
architecture, where three different machine learning models
are used in a system. Among several options to combine three
different modules with different input, we show two
representative configurations as shown in Figure 1(b). Triple
model with single input (TMSI) system simply adds one
additional machine learning module to DMSI. The output of
the system is determined by consensus among three modules.
In majority voting basis, the system fails when more than two
modules output errors with the same input. Note that error
detection capability increases by the additional module, while
the probability of common errors among different versions
also increases. The architecture is essentially a variant of triple
modular redundancy (TMR) whose reliability characteristic is
well known when failure probabilities of modules are
independent [5]. TMSI differs from TMR, since we assume
dependence of machine learning modules leading to common
errors. When each module receives different inputs, the
architecture becomes triple model with triple input (TMTI)
system. TMTI exploits input diversity in addition to model
diversity and the system fails when more than two modules
output errors.

C. Single model architecture

Another configuration we can also consider is single
model architecture that uses the same model in parallel with
different inputs. In this architecture, we do not use N-version
in terms of machine learning model, but the outputs will
change depending on which input is processed. When we use
two different inputs, the system is single model with double
input (SMDI) system, where the system fails when both of two
outputs are errors (see Figure 1(c)). Similarly, single model
with triple input (SMTI) system uses three machine learning
modules using the same machine learning model in parallel.
A failure of SMTI occurs when more than two modules
outputs errors. If the input diversity is high, these single model
architecture is beneficial because preparing and maintaining
different version of machine learning models are often very

expensive. In this paper, we categorize SMDI in a two-version
architecture and TMDI as a three-version architecture.

III. RELIABILITY ANALYSIS

In this section, we formally define the two types of
diversities and analyze the reliability of different
configurations of N-version machine learning architecture.
Due to the space limitation, we only show the reliability model
for the two-version architecture, but the derivation can be
extended to more than two-version cases. System reliability is
defined as the probability that the output of the system is
correct. We assume that the correct answer is given by real
application context. For example, a computer vision module
equipped on an autonomous vehicle is expected to recognize
the red light as presented in real environment at an intersection.
Any misconception of the red light are regarded as errors.
Define R; ; as the reliability of a machine learning system with
i versions with j diverse inputs. A system using a single model
with single input can be given by R; ;(m) = 1 — f}, where
fr represents the probability that the machine learning model
myoutputs error. Denote S as the total sample space of inputs
in a given real context and Ej, € S as the set of input data that
leads to output error by my. The error probability fi can be
given by |Ey|/|S|. In order to consider the reliability of N-
version machine learning architecture, we first introduce the
diversity metrics.

A. Definition of diversity

As previously mentioned in Section 2, two different types
of diversities are the key to enhance the reliability of N-
version machine learning architecture. We formally define
model diversity and input diversity by intersection and
conjunction of errors, respectively as below.

Intersection of errors (model diversity)
Let £, and E; be the subsets of input space S that make
machine leaning models m; and m; output errors respectively.
Define the intersection of errors a, , € [0,1] as the ratio of
the intersection over the smaller the size of £ and E».
o BNEL
“ min{|Ey|, |E;[}

The intersection of errors represents the degree of overlap
between the sets £7 and E». Since £ and E; are attributed by
the models m; and my, respectively, their intersection indicates
how the two models are similar to each other in terms of
erroneous inputs. The smaller intersection decreases the
probability of common errors of m; and m,, which
corresponds to the larger model diversity.

Conjunction of errors (input diversity)
Let x; and x; be the inputs from the same sample space S to
the machine learning model m;. Define the conjunction of
errors 3 € [0,1] as the probability that m; outputs error by x»
provided that m; outputs error by x;.

By = Pr[x; € E1|x; € Eq].

The conjunction of errors represents the possibility of both
inputs x; and x, fall into error output through the process of
the same machine learning model. We assume that the sample
space of input x; is constrained by the observation of error by
the input x; such that x; also falls into an error output. If x; and
x; are fully independent, f; is equal to fi. The similarity of
input can cause the increased conjunction which results in

B1 = fi . Thus, the smaller conjunction decreases the
probability of double errors thanks to the larger input diversity.

B. Reliability of two-version architecture

With the defined diversity metrics, we provide the
reliability models for DMSI, SMDI and DMDI systems.

1) DMSI

The double model system employs two different machine
learning models m; and m». In this system, both machine
learning models process the same input x. The system fails
when both models output errors. This means that x is in the
intersection of £, and E». Therefore, the failure probability of
DMSI system is given by

f (my,m,) = |E;NE,| —a .min{|E1|’|E2|}
pmsi(Mq, M, —|5| 1,2 —|5|
Without loss of generality, we can assume |E;| < |E,| and in
this case the reliability of DMSI system is computed by

Ryi(my,my) =1— foyg(mymy) =1—ay, fi.

2) SMDI
This system configures two machine learning modules using
the same machine learning model m; but process different
inputs x1 and x». Since the system exploits the input diversity,
the failure probability of SMDI system can be expressed as
fsmpi(my) = Pr[x; € Ey, x; € Eq]
= Pr[x, € E;|x; € E;] - Pr[x; € E;]
=pifi-
The system reliability is given by Ry ,(m;) =1 —f; * f;.
3) DMDI
This architecture combines the above two configurations.
Specifically, two different machine learning models m; and
my process the different inputs x; and x», respectively. The
architecture benefits both two types of diversity. The failure
probability of DMDI system can be computed by
fompi(my, my) = Prlx, € Ey, x; € 5]
= Pr[x, € E,|x; € E;] - Pr[x; € E;].
Given x; € Ej, there are two cases that x, also causes an error.

a) X2 has conjunction with x;
A conjunction occurs only when x; is in E; N E,. Since S
represents the possibility of conjunction for the erroneous
input space E;, we can derive the error probability
Pr[x, € E;|x; € E{] - Pr[x, € E,|x, € E{]
=B, |E1 N E,|/|E,]
=B ar min{f1'fz}/f1'
b) x> has no conjunction with x;
When there is no conjunction, x> should be in E;. In this
case, the model m, outputs error when x, € E; N E,. We
can derive the error probability
Pr(x, € E;|x; € E;] - Pr[x, € E;|x, € E{]
= (1=) |E N E,l/|E1]
= (1= 8,) (E| = |Ex n E;]D/(IS| = |E4D)
fo—ai: min{fl,fz}
= (1 - B 1) ' :
1-fi
Taking the sum of the above two probabilities, we have
Pr[x, € E;|x; € E;]. When we assume |E;| < |E,|, the
failure probability is expressed as
o=z fi

fompi(my, my) = [31 a1+ (1= Py 1-f,] “fa-

Note that fppp; (1, m;) becomes f; - f, if §; is equal to f;,
which corresponds to the case that two machine learning
modules output error independently. The system reliability of

DMDI is R, ,(my,my) = 1= [(By = fi) " 12 + f2] " fi-
C. Numerical example

To understand the impact of diversities on the reliabilities
of two-version machine learning architecture, we show a
numerical example. Assume that error probability of any
single machine learning model is 0.2 (=fi= f2). When we fix
£1=0.4, the reliabilities of different configurations by varying
o1, 1s computed as shown in Figure 2. In DMSI, when we can
fully exploit the model diversity and makes two models do not

have intersection (i.e., a1 =0), the system does not fail (R2,;=1).

The complete reliability is not achievable by DMDI as it uses
different inputs, although it generally improves the reliability
regardless of the value of 12 (i.e., Ry, = Ry 1). Next, we fix
012,=0.5 and compute the reliabilities by varying i in the
range of [0.2, 1]. Figure 3 shows the results. When £ =0.2
(=£1), there is no conjunction and two modules output errors
independently. As S increases, the reliability of two-version
system relying on input diversity decreases.

1

Ry, R;,
oss | T 2
>
= 09
=
=
E 0.85
0.8
075 T T T T T T T T T
0 R 1
Model diversity: a; ,
Figure 2. Reliability impacts of model diversity
1
Ry, Ry,
>
= 09
=
=
E 0.85
0.8
0.75 T T T T T T T T
0 0.2 1

Input diversity: £,
Figure 3. Reliability impacts of input diversity

IV. RELATED WORK

Multi version machine learning approach has been studied
for the purpose of testing machine learning software [3].
Different versions of machine learning models are used to
make a proxy oracle that do not guarantee the accuracy with
perfect confidence but is still effective to detect
implementation faults. While multi implementation testing
method aims to improve the quality of a machine learning
module, our approach uses multi version implementations in
the system operation phase and aims to improve the total
system reliability. Although it remains a discussion about in
which phase we should employ multi version implementations
most effectively for required dependability, our approach can

benefit the improved reliability by input diversity observed in
real user environment.

System testing methods for ensuring the correct system
behavior are important as well for safety-critical applications.
DeepXplore presented a white-box testing method for systems
using deep neural network whose corner case of outputs are
concerned in a system perspective [6]. To characterize the
progress of the tests, the concept of neuron coverage is
introduced that measures the parts of neural network exercised
by a set of test inputs. The framework successfully detected
the erroneous outputs of deep neural networks efficiently.
Although robustness of deep neural networks against
adversarial example are widely discussed, there are few works
address the total system reliability or consequential safety
concerns. Dreossi et al. recently addressed this issue and
proposed a falsification framework that falsify the temporal
logic considering the cyber-physical system (CPS)’s control
loop architecture containing a machine learning module that
may produce error output [7]. The CPS level analysis helps to
identify the erroneous input space of machine learning model
that can violate a given safety requirement. Our work is close
to this study because we also look into system level reliability,
but the approach to improve the reliability is different. We first
discuss the potential reliability enhancement of a system
employing N-version machine learning architecture.

V. CONCLUSION

In this paper, we presented the architecture of N-version
machine learning model that aims to improve system
reliability against unexpected outputs from machine learning
modules. The property of the N-version architecture is
characterized by model diversity and input diversity that we
formally define the metrics and analyze the reliability impact
on N-version architecture. Although we only show the
reliability analysis for two-version architecture due to the
space limit, these configurations are essentially the building
blocks of the configuration with more than two versions. The
presented reliability model could be useful to investigate
larger systems. Furthermore, we dealt with a machine learning
module as a black-box, the presented architecture and
reliability analysis are generally applicable to any machine
learning algorithms and applications. An empirical study to
show the actual reliability improvement is our undergoing
future work.

REFERENCES

[11 L Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing
adversarial examples, arXiv:1412.6572, 2014.

[2] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, Safety verification
of deep neural networks, In Proc. of International Conference on
Computer Aided Verification, pp. 3-29, 2017.

[3] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie, Multiple-
implementation testing of supervised learning software., In Proc. of
workshops at 32nd AAAI Conference on Artificial Intelligence, 2018.

[4] A. Avizienis and L. Chen, On the implementation of N-version
programming for software fault tolerance during execution. In Proc. of
IEEE International Computer, Software and Application Conference
(COMPSACQ), pp. 149-155, 1977.

[5] K. S. Trivedi, Probability and statistics with reliability, queuing, and
computer science applications, John Wiley, New York, 2001.

[6] K.Pai, Y. Cao,J. Yang, and S. Jana, Deepxplore: Automated whitebox
testing of deep learning systems, In proc. of the 26th Symposium on
Operating Systems Principles, pp. 1-18, 2017.

[7] T. Dreossi, A. Donzé, and S. A. Seshia, Compositional falsification of

cyber-physical systems with machine learning components, In NASA
Formal Methods Symposium, pp. 357-372, 2017.

	I. Introduction
	II. N-version machine learning model
	A. Two-version architecture
	B. Three-version architecture
	C. Single model architecture

	III. Reliability analysis
	A. Definition of diversity
	B. Reliability of two-version architecture
	1) DMSI
	2) SMDI
	3) DMDI
	a) x2 has conjunction with x1
	b) x2 has no conjunction with x1

	C. Numerical example

	IV. Related work
	V. Conclusion
	References

