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Abstract— Quality control of machine learning systems is a 

fundamental challenge in industries to provide intelligent 
services or products using machine learning. While recent 
advances in machine learning algorithms substantially improve 
the performance of intelligent tasks such as object recognition, 
their outputs are essentially stochastic and very sensitive to 
input data. Such an output uncertainty is a big obstacle to 
ensure the quality of safety critical applications like autonomous 
vehicle and hence architectural design to mitigate the impact of 
error output becomes a great importance. In this paper, we 
propose N-version machine learning architecture that aims to 
improve system reliability against probabilistic outputs of 
individual machine learning modules. The key idea of this 
architecture is exploiting two kinds of diversities; input diversity 
and model diversity. Our study first formally defines these 
diversity metrics and analytically shows the improved reliability 
by N-version machine learning architecture. Since we treat a 
machine learning module as a black-box, the proposed 
architecture and the reliability property are generally 
applicable to any machine learning algorithms and applications.  

Keywords—design diversity, machine learning, N-version 
programming, reliability, safety  

I. INTRODUCTION 
Recent advances of machine learning algorithms with 

increased computing power and available big data further 
expand the applications of machine learning systems. 
Computer vision, voice recognition and machine translation 
now mostly use deep neural networks, as their performances 
overreach the limit of conventional algorithms and even 
human capability. Machine learning applications are expected 
not only for improving existing products or services, but also 
for as a key enabler of new innovative systems such as 
autonomous vehicles and advanced medical diagnostic tools. 

An emergent challenge of system providers is quality 
control of the product or service uses machine learning. In 
particular for industries developing safety-critical applications, 
quality assurance is essential for their businesses. Unlike any 
software program that is coded by deterministic logic, the 
output of machine learning modules are generally uncertain. 
A machine learning module uses a model constructed from a 
training data set through a specific algorithm. The output of 
the module completely depends on the trained model and how 
well the learning algorithm extract the features of the data. 
Moreover, in many practical applications, input data to 
machine learning module is most likely not included in the 
training data set. Therefore, system provider is not able to 
ensure the complete correctness of machine learning module’s 
output in user environment where unexpected input occurs 
sporadically. This uncertainty causes a critical threat to 
machine learning models. A cyber-attack can fool the machine 
learning system to output error by malicious input, which is 
now commonly known as adversarial example [1].   

A number of studies are conducted for developing robust 
machine learning algorithms against adversarial examples. 
The robustness of machine learning algorithm can be 
increased in training phase by intentionally incorporating 
adversarial examples in the training data set [1]. Existence of 
adversarial examples for deep neural network models can be 
verified by safety verification techniques [2]. While these 
studies intend to increase the robustness of a machine learning 
module, they do not guarantee the complete reliability of the 
system. System reliability is affected not only by adversarial 
examples, but also by other factors such as errors in the labels 
of training data sets and/or algorithm implementations. 
System providers need to premise the occurrence of error 
outputs but low probability and should contemplate the 
reliable system design to reduce the impact of output errors. 

In this paper, we propose a reliable system architecture 
using N-version machine learning models whose output may 
not be correct. Our focus is not on the training of robust 
machine learning models, but on a reliable system processing 
with multiple machine learning modules. Different machine 
learning models can be used in the same system so as to 
improve the reliability of the system output. The key of 
reliability enhancement is delivered through the two kinds of 
diversities employed in the system architecture, namely model 
diversity and input diversity. Model diversity is achieved by 
using different machine learning models built from different 
algorithms, parameters, training data sets, developers and/or 
programming languages. The multi-version approaches are 
also used for test of machine learning model [3]. In contrast, 
we use multi-version models to increase the system reliability 
in the operation. In system operation, the difference of input 
is also an important factor of diversity. Input diversity is 
achieved by taking different samples for the input to machine 
learning models. For instance, an autonomous vehicle equips 
two cameras with different angle may produce two different 
image data for the recognition task at a certain time and place. 
Even if a machine learning model outputs an error with one 
input (e.g., fails to recognize an object), the model can output 
correct answer with the other input depending on the degree 
of diversity between two inputs. We formally define these two 
kinds of diversities and analytically show the improved 
reliability of N-version machine learning architecture in 
different configurations. A preliminary numerical example 
exhibits that the architecture exploiting both the diversities 
achieve the best reliability in most cases. 

II. N-VERSION MACHINE LEARNING MODEL 
N-version machine learning model is analogous to N-

version programming that is well-known software fault-
tolerant technique. N-version programming is originally 
defined as “the independent generation of 𝑁𝑁 ≥ 2 functionally 
equivalent programs from the same initial specification” [4]. 
Unlike hardware reliability, redundant configuration of the 



same software component do not improve the system 
reliability because the same software implementation can 
produce the same error output by the software faults. Provided 
that complete removal of software faults from a software 
component is extremely difficult, N-version software 
programming offers the tolerance to software faults by 
multiple implementations of the same software specification 
by changing development teams, programming languages, 
libraries and tools. Except fundamental errors in specification, 
any errors generated in software development process can be 
covered by different implementations that can lead to 
improved system reliability. 

Machine learning model generally has a similar property 
to software component. The output reliability cannot be 
improved by the redundant use of the same machine learning 
model as it produces the same error by the same input. 
Therefore, in this paper, we consider the variant of N-version 
programing for machine learning models. The differences 
between machine learning model and general software 
component are twofold as follows. First, machine learning 
model is constructed by training from examples, while 
software component is developed from a specification. The 
sources of errors in machine learning model mainly come 
from the algorithm and training data sets instead of software 
faults. Second, the output of machine learning model is 
stochastic and sensitive to the input data, while the output of 
software component is generally deterministic as specified in 
advance. A single machine learning model may behave 
differently for different input from the same sample space 
associated with the same expected outcome. This implies that 
machine learning model can output correct answer with 
different input even if it outputs error by a certain input. This 
difference gives us a unique challenge of N-version machine 
learning model; how can we exploit the different kinds of 
diversities in the architecture of machine learning system. 
Hereafter, we use the term model diversity as the diversity 
inherited from machine learning model itself, and input 
diversity as the diversity comes from different input data. The 
formal definition of these diversities are explained in Section 
III. In the following, we present some elemental but effective 
architecture of N-version machine learning models that aims 
to improve the reliability of system output. 

 
Figure 1. Variations of N-version machine learning architecture 

A. Two-version architecture 
When we have two versions of machine learning models 

for processing the same task (e.g., object recognition from an 
image data), there are at least two options to configure two 
modules in a system architecture (See Figure 1(a)). Double 
model with single input (DMSI) system simply exploits model 
diversity such that each module employs a different model. 
The system is assumed to fail when either module do not 
output expected answer. An error output of one module may 
be covered by a correct output by another module using 
different model and thereby the reliability of system output 
can increase. Since two models are constructed for the same 
purpose, the probability of simultaneous errors can be high, 
but the model diversity helps reduce such a probability. On the 
other hand, double model with double input (DMDI) system 
exploits input diversity besides model diversity by using 
different inputs from the same sample space associated with 
the ground truth. The system is assumed to fail when both of 
two modules do not output expected answers (i.e, the ground 
truth). Even if both models result in error output by an input, 
either one of the models can output correct answer by another 
input. Intuitively, the output reliability of DMDI is better than 
the reliability of DMSI, since DMDI can benefit input 
diversity as well as model diversity. We will formally discuss 
this point in Section III. 

B. Three-version architecture 
Two-version architecture can be extended to three-version 

architecture, where three different machine learning models 
are used in a system. Among several options to combine three 
different modules with different input, we show two 
representative configurations as shown in Figure 1(b). Triple 
model with single input (TMSI) system simply adds one 
additional machine learning module to DMSI. The output of 
the system is determined by consensus among three modules. 
In majority voting basis, the system fails when more than two 
modules output errors with the same input. Note that error 
detection capability increases by the additional module, while 
the probability of common errors among different versions 
also increases. The architecture is essentially a variant of triple 
modular redundancy (TMR) whose reliability characteristic is 
well known when failure probabilities of modules are 
independent [5]. TMSI differs from TMR, since we assume 
dependence of machine learning modules leading to common 
errors. When each module receives different inputs, the 
architecture becomes triple model with triple input (TMTI) 
system. TMTI exploits input diversity in addition to model 
diversity and the system fails when more than two modules 
output errors.  

C. Single model architecture 
Another configuration we can also consider is single 

model architecture that uses the same model in parallel with 
different inputs. In this architecture, we do not use N-version 
in terms of machine learning model, but the outputs will 
change depending on which input is processed. When we use 
two different inputs, the system is single model with double 
input (SMDI) system, where the system fails when both of two 
outputs are errors (see Figure 1(c)). Similarly, single model 
with triple input (SMTI) system uses three machine learning 
modules using the same machine learning model in parallel. 
A failure of SMTI occurs when more than two modules 
outputs errors. If the input diversity is high, these single model 
architecture is beneficial because preparing and maintaining 
different version of machine learning models are often very 



expensive. In this paper, we categorize SMDI in a two-version 
architecture and TMDI as a three-version architecture. 

III. RELIABILITY ANALYSIS 
In this section, we formally define the two types of 

diversities and analyze the reliability of different 
configurations of N-version machine learning architecture. 
Due to the space limitation, we only show the reliability model 
for the two-version architecture, but the derivation can be 
extended to more than two-version cases. System reliability is 
defined as the probability that the output of the system is 
correct. We assume that the correct answer is given by real 
application context. For example, a computer vision module 
equipped on an autonomous vehicle is expected to recognize 
the red light as presented in real environment at an intersection. 
Any misconception of the red light are regarded as errors. 
Define 𝑅𝑅𝑖𝑖,𝑗𝑗 as the reliability of a machine learning system with 
i versions with j diverse inputs. A system using a single model 
with single input can be given by 𝑅𝑅1,1(𝑚𝑚𝑘𝑘) = 1 − 𝑓𝑓𝑘𝑘, where 
fk represents the probability that the machine learning model 
mk outputs error. Denote S as the total sample space of inputs 
in a given real context and 𝐸𝐸𝑘𝑘 ⊆ 𝑆𝑆 as the set of input data that 
leads to output error by mk. The error probability fk can be 
given by |𝐸𝐸𝑘𝑘| |𝑆𝑆|⁄ . In order to consider the reliability of N-
version machine learning architecture, we first introduce the 
diversity metrics. 

A. Definition of diversity 
As previously mentioned in Section 2, two different types 

of diversities are the key to enhance the reliability of N-
version machine learning architecture. We formally define 
model diversity and input diversity by intersection and 
conjunction of errors, respectively as below. 

Intersection of errors (model diversity) 
Let E1 and E2 be the subsets of input space S that make 
machine leaning models m1 and m2 output errors respectively. 
Define the intersection of errors 𝛼𝛼1,2 ∈ [0,1] as the ratio of 
the intersection over the smaller the size of E1 and E2. 

𝛼𝛼1,2 =
|𝐸𝐸1⋂𝐸𝐸2|

min{|𝐸𝐸1|, |𝐸𝐸2|}
. 

 
The intersection of errors represents the degree of overlap 

between the sets E1 and E2. Since E1 and E2 are attributed by 
the models m1 and m2, respectively, their intersection indicates 
how the two models are similar to each other in terms of 
erroneous inputs. The smaller intersection decreases the 
probability of common errors of m1 and m2, which 
corresponds to the larger model diversity.  

Conjunction of errors (input diversity) 
Let x1 and x2 be the inputs from the same sample space S to 
the machine learning model m1. Define the conjunction of 
errors 𝛽𝛽1 ∈ [0,1] as the probability that m1 outputs error by x2 
provided that m1 outputs error by x1. 

𝛽𝛽1 = Pr[𝑥𝑥2 ∈ 𝐸𝐸1|𝑥𝑥1 ∈ 𝐸𝐸1]. 
 

The conjunction of errors represents the possibility of both 
inputs x1 and x2 fall into error output through the process of 
the same machine learning model. We assume that the sample 
space of input x2 is constrained by the observation of error by 
the input x1 such that x2 also falls into an error output. If x1 and 
x2 are fully independent, β1 is equal to f1. The similarity of 
input can cause the increased conjunction which results in 

𝛽𝛽1 ≥ 𝑓𝑓1 . Thus, the smaller conjunction decreases the 
probability of double errors thanks to the larger input diversity. 

B. Reliability of two-version architecture 
With the defined diversity metrics, we provide the 

reliability models for DMSI, SMDI and DMDI systems. 

1) DMSI 
The double model system employs two different machine 
learning models m1 and m2. In this system, both machine 
learning models process the same input x. The system fails 
when both models output errors. This means that x is in the 
intersection of E1 and E2. Therefore, the failure probability of 
DMSI system is given by 

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑚𝑚1,𝑚𝑚2) =
|𝐸𝐸1⋂𝐸𝐸2|

|𝑆𝑆| = 𝛼𝛼1,2 ∙
min{|𝐸𝐸1|, |𝐸𝐸2|}

|𝑆𝑆| . 

Without loss of generality, we can assume |𝐸𝐸1| ≤ |𝐸𝐸2| and in 
this case the reliability of DMSI system is computed by 
𝑅𝑅2,1(𝑚𝑚1,𝑚𝑚2) = 1 − 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑚𝑚1,𝑚𝑚2) = 1 − 𝛼𝛼1,2 ∙ 𝑓𝑓1. 
 

2) SMDI 
This system configures two machine learning modules using 
the same machine learning model m1 but process different 
inputs x1 and x2. Since the system exploits the input diversity, 
the failure probability of SMDI system can be expressed as 
𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚1) = Pr[𝑥𝑥1 ∈ 𝐸𝐸1, 𝑥𝑥2 ∈ 𝐸𝐸1] 

= Pr[𝑥𝑥2 ∈ 𝐸𝐸1|𝑥𝑥1 ∈ 𝐸𝐸1] ∙ Pr[𝑥𝑥1 ∈ 𝐸𝐸1] 
= 𝛽𝛽1 ∙ 𝑓𝑓1. 

The system reliability is given by 𝑅𝑅1,2(𝑚𝑚1) = 1 − 𝛽𝛽1 ∙ 𝑓𝑓1. 

3) DMDI 
This architecture combines the above two configurations. 
Specifically, two different machine learning models m1 and 
m2 process the different inputs x1 and x2, respectively. The 
architecture benefits both two types of diversity. The failure 
probability of DMDI system can be computed by 

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑚𝑚1,𝑚𝑚2) = Pr[𝑥𝑥1 ∈ 𝐸𝐸1, 𝑥𝑥2 ∈ 𝐸𝐸2] 
= Pr[𝑥𝑥2 ∈ 𝐸𝐸2|𝑥𝑥1 ∈ 𝐸𝐸1] ∙ Pr[𝑥𝑥1 ∈ 𝐸𝐸1]. 

Given 𝑥𝑥1 ∈ 𝐸𝐸1, there are two cases that x2 also causes an error. 

a) x2 has conjunction with x1 
A conjunction occurs only when x2 is in 𝐸𝐸1 ∩ 𝐸𝐸2. Since β1 
represents the possibility of conjunction for the erroneous 
input space 𝐸𝐸1, we can derive the error probability 

Pr[𝑥𝑥2 ∈ 𝐸𝐸1|𝑥𝑥1 ∈ 𝐸𝐸1] ∙ Pr[𝑥𝑥2 ∈ 𝐸𝐸2|𝑥𝑥2 ∈ 𝐸𝐸1]
= 𝛽𝛽1 ∙ |𝐸𝐸1 ∩ 𝐸𝐸2| |𝐸𝐸1|⁄
= 𝛽𝛽1 ∙ 𝛼𝛼1,2 ∙ min�𝑓𝑓1, 𝑓𝑓2� 𝑓𝑓1� . 

b) x2 has no conjunction with x1  
When there is no conjunction, x2 should be in 𝐸𝐸1���. In this 
case, the model m2 outputs error when 𝑥𝑥2 ∈ 𝐸𝐸1��� ∩ 𝐸𝐸2 . We 
can derive the error probability  

Pr[𝑥𝑥2 ∈ 𝐸𝐸1���|𝑥𝑥1 ∈ 𝐸𝐸1] ∙ Pr[𝑥𝑥2 ∈ 𝐸𝐸2|𝑥𝑥2 ∈ 𝐸𝐸1���] 
= (1 − 𝛽𝛽1) ∙ |𝐸𝐸1��� ∩ 𝐸𝐸2| �𝐸𝐸1������  
= �1 − 𝛽𝛽1� ∙ (|𝐸𝐸2| − |𝐸𝐸1 ∩ 𝐸𝐸2|) (|𝑆𝑆| − |𝐸𝐸1|)⁄  

= �1 − 𝛽𝛽1� ∙
𝑓𝑓2 − 𝛼𝛼1,2 ∙ min�𝑓𝑓1, 𝑓𝑓2�

1 − 𝑓𝑓1
. 

Taking the sum of the above two probabilities, we have 
Pr[𝑥𝑥2 ∈ 𝐸𝐸2|𝑥𝑥1 ∈ 𝐸𝐸1] . When we assume |𝐸𝐸1| ≤ |𝐸𝐸2| , the 
failure probability is expressed as  

𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑚𝑚1,𝑚𝑚2) = �𝛽𝛽1 ∙ 𝛼𝛼1,2 + (1 − 𝛽𝛽1) ∙
𝑓𝑓2 − 𝛼𝛼1,2 ∙ 𝑓𝑓1

1 − 𝑓𝑓1
� ∙ 𝑓𝑓1. 



Note that 𝑓𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑚𝑚1,𝑚𝑚2) becomes 𝑓𝑓1 ∙ 𝑓𝑓2 if 𝛽𝛽1 is equal to 𝑓𝑓1, 
which corresponds to the case that two machine learning 
modules output error independently. The system reliability of 
DMDI is 𝑅𝑅2,2(𝑚𝑚1,𝑚𝑚2) = 1 − �(𝛽𝛽1 − 𝑓𝑓1) ∙ 𝛼𝛼1,2 + 𝑓𝑓2� ∙ 𝑓𝑓1. 

C. Numerical example 
To understand the impact of diversities on the reliabilities 

of two-version machine learning architecture, we show a 
numerical example. Assume that error probability of any 
single machine learning model is 0.2 (=f1= f2). When we fix 
β1=0.4, the reliabilities of different configurations by varying 
α1,2 is computed as shown in Figure 2. In DMSI, when we can 
fully exploit the model diversity and makes two models do not 
have intersection (i.e., α1,2=0), the system does not fail (R2,1=1). 
The complete reliability is not achievable by DMDI as it uses 
different inputs, although it generally improves the reliability 
regardless of the value of α1,2 (i.e., 𝑅𝑅2,2 ≥ 𝑅𝑅1,1). Next, we fix 
α1,2=0.5 and compute the reliabilities by varying β1 in the 
range of [0.2, 1]. Figure 3 shows the results. When β1 =0.2 
(=f1), there is no conjunction and two modules output errors 
independently. As β1 increases, the reliability of two-version 
system relying on input diversity decreases. 

 
Figure 2. Reliability impacts of model diversity  

 

 
Figure 3. Reliability impacts of input diversity 

IV. RELATED WORK 
Multi version machine learning approach has been studied 

for the purpose of testing machine learning software [3]. 
Different versions of machine learning models are used to 
make a proxy oracle that do not guarantee the accuracy with 
perfect confidence but is still effective to detect 
implementation faults. While multi implementation testing 
method aims to improve the quality of a machine learning 
module, our approach uses multi version implementations in 
the system operation phase and aims to improve the total 
system reliability. Although it remains a discussion about in 
which phase we should employ multi version implementations 
most effectively for required dependability, our approach can 

benefit the improved reliability by input diversity observed in 
real user environment. 

System testing methods for  ensuring the correct system 
behavior are important as well for safety-critical applications. 
DeepXplore presented a white-box testing method for systems 
using deep neural network whose corner case of outputs are 
concerned in a system perspective [6]. To characterize the 
progress of the tests, the concept of neuron coverage is 
introduced that measures the parts of neural network exercised 
by a set of test inputs. The framework successfully detected 
the erroneous outputs of deep neural networks efficiently. 
Although robustness of deep neural networks against 
adversarial example are widely discussed, there are few works 
address the total system reliability or consequential safety 
concerns. Dreossi et al. recently addressed this issue and 
proposed a falsification framework that falsify the temporal 
logic considering the cyber-physical system (CPS)’s control 
loop architecture containing a machine learning module that 
may produce error output [7]. The CPS level analysis helps to 
identify the erroneous input space of machine learning model 
that can violate a given safety requirement. Our work is close 
to this study because we also look into system level reliability, 
but the approach to improve the reliability is different. We first 
discuss the potential reliability enhancement of a system 
employing N-version machine learning architecture. 

V. CONCLUSION 
In this paper, we presented the architecture of N-version 

machine learning model that aims to improve system 
reliability against unexpected outputs from machine learning 
modules. The property of the N-version architecture is 
characterized by model diversity and input diversity that we 
formally define the metrics and analyze the reliability impact 
on N-version architecture. Although we only show the 
reliability analysis for two-version architecture due to the 
space limit, these configurations are essentially the building 
blocks of the configuration with more than two versions. The 
presented reliability model could be useful to investigate 
larger systems. Furthermore, we dealt with a machine learning 
module as a black-box, the presented architecture and 
reliability analysis are generally applicable to any machine 
learning algorithms and applications. An empirical study to 
show the actual reliability improvement is our undergoing 
future work. 
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