Multi-version Machine Learning and Rejuvenation for Resilient

Perception in Safety-critical Systems

Qiang Wen*¥, Jdlio Mendongaﬁ, Fumio Machida*, Marcus thlpT
*Department of Computer Science, University of Tsukuba, Japan
Tlnterdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
wen.qgiang @sd.cs.tsukuba.ac.jp, julio.mendonca@uni.lu, machida@cs.tsukuba.ac.jp, marcus.voelp@uni.lu

Abstract—Machine learning (ML) has become a crucial com-
ponent in safety-critical systems, such as those used in au-
tonomous vehicle perception. However, the correctness and,
therefore, the safety of these systems can be compromised by
out-of-distribution data, accidental faults, and security breaches.
This paper investigates using a replicated ML architecture to
mitigate the risks associated with complex single-points-of-failure.
Additionally, it explores the application of rejuvenation to sustain
healthy majorities when facing persistent threats. We evaluate
the output reliability of the proposed architecture in two case
studies: traffic sign detection and perception for autonomous
driving. We adopt models and reliability functions, validating our
findings using realistic data sets and fault injection experiments.
We also evaluate driving safety using the proposed architecture
in the CARLA simulator. Our results show that our models
can present a good generalization and multi-version ML with
proactive rejuvenation can improve correctness and, thus, safety
despite faults and cyberattacks.

Index Terms—Multi-version system, Machine learning, Percep-
tion, Rejuvenation, Reliability, Safety

I. INTRODUCTION

Recent advances in Machine Learning (ML) have revo-
lutionized application domains, such as text, speech, image
and video processing, control, and even arts. The success
of ML has also led to widespread adoption in safety-critical
application domains, such as autonomous driving or health,
with in-car perception systems being among the most popular
use cases. Perception identifies the road, traffic signs, other
vehicles, and pedestrians to obtain an accurate map of the
vehicle’s surroundings, classifying potential mobile and sta-
tionary obstacles to predict possible future behaviors of the
former [1]. The goal is to identify a safe route for the vehicle
to approach its destination.

ML-based systems, including perception systems, cannot
guarantee output correctness due to inherent uncertainties
related to the probabilistic decisions of ML models [2], [3].
Furthermore, transient faults (e.g., bit flips in the weight
matrix [4]) and malicious cyber-attacks (e.g., adversarial in-
puts [5]) can degrade the perception performance, potentially
causing misclassification with possibly severe consequences,
leading to accidents or even loss of human life. Therefore,
reliability of perception is still a significant concern and chal-
lenge to be solved, in particular for safety-critical applications
such as autonomous driving.

IThese authors contributed equally.

N-version programming (NVP) [6] is a promising approach
to ensure diversity, leading to independence in the failure
characteristics of versions performing a task. This diversity
ultimately enhances safety by enabling the survival of a
healthy majority, which can outvote arbitrarily faulty or com-
promised modules (i.e., Byzantine modules). Previous studies
have analyzed the adoption of N-version ML systems and pre-
sented their benefits for improving output reliability [7]-[10].
However, they only considered classification errors due to the
uncertainty of ML models and not adversarial circumstances
such as transient faults or cyber-attacks. Also, NVP only
provides an initial diversity to secure a healthy majority, which
may be lost as persistent adversaries continue to learn how
initial versions may be compromised. Proactive rejuvenation
and automatic diversification are needed [11], which have not
yet been adequately investigated for NVP [12].

This paper proposes a novel architecture that integrates
multi-version ML and reactive/proactive rejuvenation to en-
hance the reliability of safety-critical ML systems. To quan-
titatively evaluate the effectiveness of the proposed architec-
ture and study its parameters, we develop Deterministic and
Stochastic Petri Net (DSPN) models and reliability functions
to assess how trustworthy the resulting system will be. The
DSPN models capture accidental faults and intentionally ma-
licious threats and their effect on vehicular perception systems.
Since the architecture uses multiple-version ML, decision rules
are defined to provide the final output of the system. These
rules not only support full fault masking in situations where
this is still possible but also degraded reliability modes of
operation after an increasing number of ML modules cease
to operate correctly. We conduct experiments for two-version
and three-version ML modules (e.g., dual or triple modu-
lar redundant perception systems) with a real-world traffic
sign dataset and reliability models. Our results show that
the reliability of the two-version system can be higher than
that of the three-version system. The results also show in
which scenarios adopting a rejuvenation mechanism would be
beneficial and in which not. We analyze the optimum values
for the choice of rejuvenation time interval and other relevant
input parameters regarding system output reliability. Lastly,
we implement a case study where we use a multi-version
perception system with time-triggered proactive rejuvenation
in the autonomous vehicle (AV) simulator Carla to evaluate the
proposed approach in a simulation of real-world scenarios. The

main contributions of this work are summarized as follows:

1) develop DSPN models and reliability functions to com-
pute the output reliability of systems, taking into account
accidental faults, malicious attacks, and proactive and
reactive rejuvenation;

2) perform fault injection experiments to confirm the ana-
Iytical findings and to evaluate multi-version ML models;

3) perform parameter studies, analyzing the interplay of var-
ious parameters to find scenarios where output reliability
is maximized; and

4) demonstrate the evaluation of the proposed work by
implementating a multi-version perception system with
time-triggered proactive rejuvenation in an AV simulator
to enhance driving safety.

The remainder of the paper is organized as follows. After
discussing background and related work in Section II, we
introduce in Section III the current vulnerabilities in ML
systems. Section IV presents the proposed architecture for
multi-version ML systems that are subject to proactive reju-
venation. Section V presents the corresponding DSPN models
to analyze rejuvenating multi-version ML systems. We discuss
our experiments using a real-world traffic sign dataset and
numerical analysis of the proposed models in Section VI and a
case study where a multi-version perception system with time-
based rejuvenation is implemented in an AV in Section VI
Section VIII discusses identified threats to the validity and
limitations of our work. Section IX concludes this paper.

II. BACKGROUND AND RELATED WORK
A. N-version machine learning

N-version ML system is the architectural approach to im-
prove the reliability of ML system output by exploiting multi-
ple versions of ML inferences [13]. Unlike ensemble learning,
which combines multiple learners to build a better model,
the N-version ML architecture utilizes pre-trained black-box
models, focusing primarily on inference rather than training.
Several architecture options are possible for N-version ML
systems as different models and input data can diversify the
inferences from independent ML modules. For example, Wen
and Machida [10], [13] proposed reliability models to design
two- and three-version ML systems. Mendonga et al. [14]
proposed the use of N-version ML and rejuvenation to improve
the reliability of perception systems output. However, they
only evaluated the system through models and functions. Other
works, such as Wu et al. [15], Xu et al. [16] and Latifi et
al. [8], experimentally evaluated the adoption of N-version ML
systems, showing reliability benefits.

Two-version systems run two ML modules in parallel and
compare inference results to determine the system output. If
one of the two inference results is incorrect, the decision is
postponed to maintain safety, trusting in re-executing the infer-
ence correctly. Three-version systems include one additional
ML module and a voter to select the majority result. The voter
can adopt, for instance, a 2-out-of-3 scheme, where the system
failure occurs when two or three ML modules output errors

coincidentally. Lyons and Vanderkulk [17] defined the failure
probability of a three-version system as F' = 3(1 — p)p? +p?,
where p is the output error probability of a system version,
and 0 < p < 1. In this equation, it is assumed that output
errors of the system versions are independent. However, this
assumption is unlikely to hold, as demonstrated by Littlewood
etal. [18]. Ege et al. [19] further extended the model to assume
that the error probability is dependent on a factor «, where
0 < a < 1. Thus, the failure probability of the three-version
system amounts to

F =3ap(1 —a) + o?p. (1)

The reliability of the three-version system becomes R = 1—F'.
However, Ege et al. assumed the same p and « for all three
system versions, which is an assumption unlikely to hold for
ML-based systems. Later, Wen and Machida [10] extended this
model, by allowing different values for p and «. The failure
probability of the three-version ML system is given by

F=oaip-pr+ai3-pt +a3-p2—2012-a13-p1, (2)

where p; is the probability that ML model m,; outputs errors
and o ; represents the intersection of error sets F; and Ej,
which are the input sets that make ML models m; and m;
output error, respectively.

B. Fault-injection and ML

Fault injection comprises well-developed techniques to eval-
uate the dependability of systems [20]. These techniques are
essential for understanding the system’s behavior under hard-
ware and software fault situations. Primarily, these techniques
aim to replicate the effects of faults that may be hard to
replicate in large or complex systems [21].

With the growth of ML applications, understanding the
impact of faults on hardware and software for these appli-
cations became crucial. Recent works have proposed fault-
injection tools and frameworks to facilitate replicating fault
effects on ML models [22]-[26]. All of these tools or frame-
works facilitate the evaluation of ML models’ behaviors when
encountering faults or atypical situations. PytorchFI, proposed
by Mahmoud et al. [22], is an open-source tool that is among
the most adopted tools to perturb models and generate faulty
model versions. It allows users to perform perturbations in
both weights and neurons in deep neural networks (DNNs)
convolutional operations during the models’ execution. These
perturbations on the DNN models can represent different types
of faults in ML modes, such as bit-flips, memory errors,
and adversarial attacks. For instance, Piazzesi et al. [27] use
PytorchFI to generate faulty ML models and evaluate how
an AV would drive when the ML model that performs object
detection encounters different types of faults. Wen et al. [28]
utilize PyTorchFI to generate compromised models, enabling
an evaluation of the impact of the multi-version perception
system on AV driving safety.

C. Software rejuvenation & DSPN modeling

Software rejuvenation [29] is a well-known maintenance
technique to avoid system degradation and help increase sys-
tem availability and reliability. Traditional software reliability
and rejuvenation modeling are well-established in the litera-
ture, especially for virtualized and cloud environments [30].
Petri nets and their extensions, such as DSPN and Stochastic
Reward Nets (SRN), have been successfully employed to
model and evaluate fault-tolerant systems [31] and rejuvena-
tion techniques [32]. Studies have adopted this modeling tech-
nique to analyze the impact of aging-related bugs in software
systems [33] and how rejuvenation mechanisms help mitigate
them [34]. However, a few works consider this technique as
an instrument to prevent ML system degradation and improve
output reliability [14].

DSPNs are excellent for modeling failures and time-based
rejuvenation behaviors. They allow stochastic transitions rep-
resenting events with some time variance, such as failures,
following an exponential time distribution. DSPNs also allow
deterministic transitions that can be applied regularly to trigger
a rejuvenation operation. DSPNs follow the regular Petri nets
notation. Tokens are kept in places, and transitions firing
consume tokens from one place, generating new tokens in
another place. We denote tokens by small black circles or
numbers. Places are shown as white circles, and transitions
as rectangles. Immediate transitions are thin black rectangles,
stochastic transitions are white rectangles, and deterministic
transitions are bold black rectangles. Arcs (represented by
arrows) connect places and transitions. They define token
flows through the places and can have weights. Inhibitor arcs
(represented by an arrow ending with a small white circle)
can disable a transition when its weight is met. We refer the
reader to Marsan et al. [35] for further details.

III. NN VULNERABILITIES AND FAULT MODEL

Neural networks (NNs) produce results with some random-
ness unless used in a controlled environment with identical
inputs. The correctness of their output depends on factors
like training data quality, network weights, and settings. Un-
derstanding these aspects is crucial when working with ML
models. On the other hand, similar to any other software, NNs
are subject to faults and threats that could compromise their
output. Different types of faults can affect NNs permantely
or temporarily. Two main accidental fault models have been
widely explored for NNs: i) fixed logic values (i.e., permanent
faults), representing situations where permanent defects in the
transistor and interconnection structures cause bits to get stuck,
and ii) random bit-flips (i.e., transient faults), representing sit-
uations where external perturbations alter the data representing
potentials at logic, register, or memory level [36]. Both types
can cause misclassification and compromise the applications
that depend on the NN being correct.

Threats to NNs include poisoning, adversarial, model ex-
traction, and model inversion attacks, just to list a few from the
work [37]. Threat models considering those types of attacks
have been widely studied and include adversarial attacks

and proposed defenses against them [38]-[40]. Although less
explored, the security of NNs can be further harmed through
rowhammer attacks on the weights [41] (leading to similar
fault characteristics) and through vulnerabilities in deep learn-
ing frameworks (e.g., PyTorch, TensorFlow, or Caffe). Xiao et
al. [42] presented vulnerabilities in such frameworks that could
allow attackers to (1) launch denial-of-service attacks, (2)
crash deep learning applications due to memory exhaustion,
(3) generate wrong classification outputs by corrupting the
classifier’s memory, or (4) hijack the control flow to remote
control the deep learning application hosting system. The latest
CVE reports on Tensorflow (CVE-2023-27506, CVE-2023-
25668), PyTorch (CVE-2022-45907), and Caffe (CVE-2021-
39158) confirm the presence of such vulnerabilities.

Torres-Huitzil and Girau [36] review a large body of work
on passive methods to tolerate the above faults in NNs (e.g., by
replicating critical neurons, noise injection during training, and
optimizing for tolerance). However, passive methods cannot
tolerate framework or implementation faults, which is why, in
this work, we shall focus on active methods.

We assume that ML modules can fail for arbitrary, poten-
tially intentionally malicious reasons, and they may exhibit
arbitrary failure characteristics in doing so. This includes
random bit flips and memory corruption caused by high energy
particles striking the microelectronic circuit [36], [43], but also
cyberattacks leveraging vulnerabilities in ML frameworks [42]
or attacks presenting adversarial samples. In this work, we do
not address model extraction and inversion attacks, as they
operate through different mechanisms. To a limited extent, a
majority voting rule and proper isolation of the ML modules
hinder the exfiltration of information, even if an NN or its
implementation has been compromised. Our architecture in-
cludes components — a voter and rejuvenation mechanism —
that, for simplicity, we will assume not to fail or be attackable.
Rejuvenation leverages Operating System (OS) mechanisms to
start, isolate, and connect ML modules. The rationale for these
assumptions is that those components are relatively simple.
They can, for example, be included in a trusted hypervisor
(e.g., formally verified seL4 [44]) or be implemented entirely
in hardware. Gouveia et al. [45] demonstrate the resilient
design of such mechanisms.

IV. MULTI-VERSION ML SYSTEMS

Active fault-tolerance methods, including error detection
and recovery, masking, and reconfiguration, have the potential
to handle and recover from various NN faults. Masking and
reconfiguration techniques can even address faults without
needing to understand or detect them. In this section, we intro-
duce our active-replication-based multi-version ML architec-
ture. This architecture tolerates both accidental and malicious
faults in ML modules by leveraging (1) multiple ML modules,
(2) a voter, which can be configured with different voting
rules (s.a., majority voting), to mask erroneous outputs from
compromised or faulty ML modules, and (3) a rejuvenation
mechanism to maintain a healthy majority of ML modules.

Multi-version ML system

Output
voter >

ML modules

‘ Rejuvenation
8 mechanism

Fig. 1: Multi-version ML systems with time-triggered proac-
tive rejuvenation. ML modules can be healthy (H), compro-
mised but still functional (C), and non-functional (N). Dashed
transitions (i.e., C — H and H — H) represent proactive
rejuvenation.

Fig. 1 shows our proposed architecture and its components.
Multiple different sensors feed into the ML modules, which
internally may select a subset of these inputs [46] or be
prepared to detect and sideline faulty sensors. ML modules
can execute a combination of NNs and other decision modules
to perform the classification and prediction task at hand. For
example, for autonomous driving, an ML module may include
NN for vehicle, passenger and obstacle detection, traffic sign
detection, face-based intention prediction (e.g., to learn if
pedestrians wish to cross the road), and they may invoke them
in response to prior NN outputs (e.g., dependent on the number
of pedestrians detected).

A trusted voter collects the individual outputs from the
ML modules and decides, based on pre-defined rules, what
the final output should be. This way, arbitrary faults in one
ML module can be tolerated and compensated by the other
healthy ML modules, which meet the rules of the voter and
agree to some extent with the outputs they generate, even if
these outputs differ slightly. Possible voting schemes include
simple majority (e.g., 2-out-of-3) [10], unanimity (e.g., 3-out-
of-3) [8], or approximate versions of the above [47].

To maintain this healthy majority, the rejuvenation mecha-
nism restarts and possibly diversifies one random ML module
at a time to return it to a healthy state (H). Naturally, the
rejuvenation mechanism works against certain types of faults
and attacks (e.g., memory bit-flips and vulnerabilities in the
ML framework). Leveraging diversification when rejuvenating
(e.g., load a different module having different characteristics
such as ML model and ML framework) can harden the system
against these types of faults and attacks.

In this work, we focus on modeling rejuvenation — by
using diverse ML modules (i.e., different M. modules, which
use different ML models) — and on time-triggered proactive
rejuvenation, which also rejuvenates a module while it is
still healthy, to avoid missing compromised modules in case
detection fails. In particular, rejuvenation recovers an ML
module from ongoing cyberattacks, for example, by reloading
and redeploying an ML module from a safe memory location.
Although an ML module cannot process sensor data while
rejuvenating, the entire system may profit from embracing a
proactive rejuvenation mechanism (in addition to a reactive

one for recovering non-functional modules from N — H). Such
a mechanism can recover the total capacity of an ML module
and mitigate error probability dependency between modules
by reducing prolonged exposure to potential faults. Gouveia et
al. [45] illustrate how to replicate the OS functionality required
for implementing rejuvenation.

For the remainder of this paper, we consider a multi-version
ML system composed of three ML modules, a trusted voter,
and a rejuvenation mechanism. That is, we reason about
reliability under the condition that the voter and rejuvenation
mechanism continues to operate correctly, while ML modules
may transition from healthy (H) to compromised but functional
(C) to non-functional (N) states. Adversaries having compro-
mised an ML module (e.g., by exploiting a vulnerability in
the ML framework) seek to retain its responsiveness while
subverting the output this module produces. This is to avoid
widespread detection mechanisms that, for example, suspect a
module is faulty if it does not respond by its deadline. We shall
model such behavior as a possibility to remain compromised
(i.e., in C-state) while failure to respond triggers detection and
reactive recovery (of the modules in N-state). We apply the
following voting rules:

R.1 when the three modules are operational, the voter needs
two equal/similar inputs to generate an output. It means
that two inputs must be correct for classifying the envi-
ronment correctly (i.e., 2-out-of-3 voting). Thus, output
error occurs only when the voter receives two or more
wrong inputs (according to the ground truth — that the
voter is not aware) from the modules.

R.2 when only two modules are operational, the voter also

needs two equal/similar inputs to generate an output.

Thus, 2-out-of-2 inputs must be correct (according to

the ground truth) to classify the environment correctly.

In the case of input divergence, the voter safely skips the

decision because it cannot give an output with confidence.

Output error occurs only when the voter receives two

similar inputs that are wrong classified according to the

ground truth.

the voter accepts only one input when there is only

one operational module. In the case the input is correct

according to the ground truth, it will classify the environ-
ment correctly.

R.3

These rules are defined to demonstrate the feasibility of
our approach. Usually, for safety-critical systems, the skipping
rule comes with a threshold for the number of subsequential
skips so the system can meet safety or timing requirements as
demonstrated by Matovic et al. [48].

In addition to the above, Machida et al. [49] found that
multi-version ML systems have a high correlation of inference
errors. We shall, therefore, consider that the misclassification
of samples has an error probability dependency o« between
the different versions of the currently active ML modules.
Misclassification of ML modules (e.g., m., m,) in a healthy
state (H) is therefore considered to be dependent with a factor
of 0 <a<.

V. MODELLING THE RELIABILITY OF MULTI-VERSION
ML SYSTEMS

This section presents the DSPN models and reliability
functions we developed to evaluate the reliability of multi-
version ML systems and multi-version perception in particular.
We describe the models, the time-triggered proactive rejuve-
nation mechanism, and the reactive rejuvenation mechanism
we deploy to return them to a healthy state. We formulate
reliability functions for singular, dual- and triple-modular re-
dundant ML systems. In this paper, we focus on quantitatively
studying the influence of parameters such as rejuvenation
interval, duration, mean time to compromise, error probability
dependency, and reliability when ML modules are in healthy
or compromised states. For that reason, we limit the number
of ML modules to n = 3. In contrast to Mendonga et al. [14],
we define reliability functions for three version systems and
experimentally evaluate them using a traffic sign dataset.

A. DSPN models

We leverage DSPNs to represent failure behaviors, reactive
rejuvenation, and time-triggered proactive rejuvenation in our
evaluation of the reliability of multi-version ML systems.
According to our fault model (see Section III), we assume that
the voter and the rejuvenation mechanism are always correct.
We model time-triggered proactive rejuvenation to recover at
most one ML module at a time and to randomly select which
module to rejuvenate. Reactive rejuvenation is triggered by the
voter not receiving a proposal and rejuvenates non-functional
modules (in N state) one at a time. We model reactive
rejuvenation to take precedence over proactive rejuvenation.
That is, while non-functional modules remain, no healthy
or compromised module will be rejuvenated. DSPN models
mainly adopt exponential distributions as per generalization
and for a good representation of stochastic behavior of timing
events. Other types of distribution can be adopted as needed.

Fig. 2 presents the DSPN for a system with 3 ML modules
subject to failures, attacks, and reactive rejuvenation only (i.e.,
reactive rejuvenation is limited to non-functional modules).
The place Pmh denotes the number of healthy ML modules,
place Pmc the number of compromised and place Pmf the
number of non-functional modules. These places relate, re-
spectively, to the states H, C, and N, presented in Fig. 1.
Since n = 3, we instantiate the model with 3 tokens in Pmh.
The exponential transition Tc represents attacks or failures that
compromise an ML module but leave it responsive, possibly
with wrong outputs. When Tc fires, one token is consumed
from place Pmh, and a new token is generated in place Pmc,
meaning that one ML module went from state H to C. Tc
firing corresponds to the time it took an adversary to find
and utilize a vulnerability through which a module could be
compromised. 7f is enabled if at least one token resides in
Pmc. When Tf fires, a token is consumed from Pmc and placed
into Pmf, representing the change from state C to N of an
ML module, indicating this module is no longer responding to
inference requests. This might occur in response to accidental
faults or attacks that crash the module rather than leaving

I—l Tc
all >

Pmh(3 Pmc

Tr

Lmf

O If

Fig. 2: DSPN for a multi-version ML system not employing
a proactive rejuvenation mechanism.

Pmh('3 [e__ Pmc

Pre Tre Ptr

[e3]

(a) Rejuvenation Clock

DTr 1
_/ g
Pmf
(b) ML multi-version system
Fig. 3: DSPN for a multi-version ML system containing
three ML modules and adopting a proactive time-triggered

rejuvenation mechanism.

it operational and will trigger the detection mechanism for
rejuvenating that module. Once triggered, this mechanism will
proceed with the rejuvenation, ignoring further outputs, until
the module is returned to a healthy state. The transition 7r
models this reactive rejuvenation mechanism, which moves
one token from Pmf to Pmh.

Fig. 3 (a) shows the model of a time-trigger for proactive
rejuvenation, and Fig. 3 (b) the integration of this mechanism
into the multi-version ML system shown in Fig. 2. Time-
triggered proactive rejuvenation starts with a token in place
Prc, which enables the deterministic transition Trc. Trc fires
after the rejuvenation interval of length 1/+, where ~ is rate
at which rejuvenations should happen. Next, Trc consumes the
token in Prc and places a token in Ptr to indicate the triggering
for a rejuvenation action. Transition 77t models the resetting
of the clock to trigger the next rejuvenation action.

We connect the multi-version ML model of Fig. 3 (b) with
the rejuvenation clock in Fig. 3 (a) by means of guards. Guards
refer to Boolean functions over the current marking. They
enable transitions to fire, provided the Boolean function returns
true. The presence of a token in place Ptr satisfies the guard
function g/, which enables the transition Tac (in the DSPN of
Fig. 3 (b)). When g3 is satisfied, the transition 7r¢ can fire,
generating a token in Prc, which resets the clock to a state
where it waits for the next rejuvenation to happen after 1/+.
Table I lists the guard functions and weights used in our DSPN
models.

Apart from the proactive rejuvenation mechanism, the op-
eration of the DSPN for the three-version ML system of
Fig. 3 (b) is similar to the one described in Fig. 2. Proactive
rejuvenation works as follows. When the transition 7ac fires,
it generates a token in the place Pac, where it enables either
Trjl or Trj2, to start the rejuvenation process. The firing of

TABLE I: Guard functions and arc weights for the DSPN
models of Figures 3 (a) and (b).

Transition Guard/Weight Enabling Function/Value
Tac gl #Ptr = 1
Trjl, Trj2, g2 (#Pmf + #Pmr) < 1
Trt 23 (#Pmr + #Pac) > 0

. IF (#Pmc = 0): (0.00001) ELSE
Tl wi (#Pmc/(#Pme + #Pmh));
Trj2 w2 IF (#Pmh = 0): (0.00001) ELSE

(#Pmh/(#Pmc + #Pmh));

Trj2 means a healthy ML module will be rejuvenated, while
the firing of Trjl indicates a compromised ML module will
be rejuvenated. However, the firing of Trjl or Trj2 can only
happen when there is no faulty ML module (i.e., no tokens
in place Pmf). The inhibitor arcs from Pmf to Trjl and Trj2
model this behavior to ensure reactive rejuvenation precedes
proactive rejuvenation. Since choosing what ML module to
proactively rejuvenate is random, the weight functions wl
and w2 define the firing probability of the system choosing a
healthy or compromised module to be rejuvenated. The firing
of Trjl or Trj2 generates a token in place Pmr, enabling Trj,
symbolizing an ML module being proactively rejuvenated. The
parameter associated with the exponential transition 777 (i.e.,
1/p,) defines the duration of the rejuvenation process. It is
important to notice that during the rejuvenation process, the
ML module being rejuvenated is not functional. The firing of
Trj completes the rejuvenation procedure, which generates a
token in place Pmbh.

B. Reliability functions

In the following, we describe the reliability functions for our
triple-modular redundant ML system with reactive and time-
triggered proactive rejuvenation as well as for a single- and
dual-module system, which we use as baselines.

Let R; ;1 be the output reliability of a multi-version ML
system, where ¢,j, and k represent the numbers of ML
modules in healthy, compromised, and non-functional states,
respectively. When we assume an ML module can sustain its
output reliability even under a compromised state, I2; j, can
be computed by the general reliability model for redundant
systems, considering independent or dependent (see Eq. 1 and
2) errors to compute the failure probability. However, such
an assumption is impractical as a compromised ML module
should be more likely to provide a wrong output. Therefore,
instead of relying on the equivalent failure probability p,
we define p/(> p) as the output failure probability in a
compromised state.

In our proposed system, the states of ML modules are
changed due to events such as attacks, failures, and rejuve-
nation. Thus, the system’s expected reliability also depends
on the current system state. Define S as the set of reachable
states in the DSPN models presented in Section V-A. A state
of a multi-version system can be represented as (4,75, k) € S

with ¢, j, and k defined as above. The steady-state probability
m;,4,k can be computed by solving the DSPN models.

Then, the expected system output reliability is given by
assigning I?; ; ;. as the rewards for the individual states:

E[Rsys] = Z i gk L 5k 3)
(3,3,k)ES

1) Reliability functions for a single-version system: A
single-version system is the baseline of the considered archi-
tecture. Once the single module fails, the entire system be-
comes unavailable. The expected reliability of a single-version
system can be computed with R; ¢ o and R 1,0. When the ML
module is healthy, output reliability is given by R; g0 = 1—p.
On the other hand, when the module is compromised, the
output reliability is changed to Ry 1, = 1 — p’. Therefore, the
expected reliability is E[R1,] = 71,0,0(1 —p) + m0,1,0(1 —p').

2) Reliability functions for a two-version system: Following
the assumptions defined in Section IV, a dual-version system
should output an error when both ML modules input the
same incorrect input into the voter. Note that the system
degrades to a single-version system when either one of the
modules is in a non-functional state. As the output reliability
depends on the combinations of two modules’ states, we
define the reliability function matrix Rgs whose (4, j) element
corresponds R; ; .4, j, k € {0,2},k =2 — (i + j) if the state
is reachable, otherwise 0.

0 1—-p 1—ap
1=y 1-[p+)/2a 0 |. @
1—ap 0 0

Rep =

Taking the function Ry as an example, it represents
the reliability of having a correct output when there are
two modules in a healthy state. The failure probability of a
healthy module is defined by p. Since there is an error output
dependency of o between the two modules, the reliability for
the state is computed as %2 0,0 = 1 — ap. The same holds for
Ry 2,0, where the reliability is given by 1 — ap’.

Note that defining the boundaries for the reliability function
parameters is essential. The reliability model for dependent
failure assumes a constant dependency parameter a. As a
result, p and o are constrained by the total probability that
should not exceed one. In a dual-version system, the probabil-
ity that at least one version outputs error is given by 2p — pa.
Since the probability cannot exceed one, we have p(2—a) <1
as the boundary for the parameters o and p.

3) Reliability functions for a three-version system: We em-
ploy a majority voting scheme in a three-version architecture
to determine the final system output. It means the system
outputs an error when two or more ML modules output errors
simultaneously. The system degrades to a two-version system
when one module is non-functional. Similar to the two-version
system, the reliability of the three-version system in different
states is represented by the reliability function matrix Rygg
whose (i, j) element corresponds R; j .4, 7,k € {0,3},k =
3 — (i + j) if the state is reachable, otherwise 0.

0 1 —p 1 — ap RB,O,O
Res—= |1~ P 1-[p+p)/2Ja R0 O
1— Oépl RLQ’O 0 0 ’
Ro.3.0 0 0 0
4)

Rs0,0 =1 — [3ap(1 — a) + ’]p,
Ra10=1—ap+alp+p)(1 - (p+1)/2)],
Ry =1~ [ap’ + a(p+p)1—(p+p)/2),
Ros0=1—[3ap/(1—a)+a?]p

Lastly, the probability that at least one module outputs an
error in a three-version system is given by 3p(1 — a) + pa?.
Therefore, we have p(3(1 — a) + a?) < 1 as the boundary of
the parameters o and p.

VI. EXPERIMENTAL CONFIRMATION OF THE MODELS AND
THEIR FEASIBILITY FOR RELIABILITY ANALYSIS

This section presents our experimental and numerical anal-
ysis of the introduced DSPN models and their reliability
functions to demonstrate their feasibility in analyzing multi-
version ML module reliability. First, we fine-tune the param-
eters of the reliability functions and DSPN models to reflect
the accuracy of different ML models on a real-world dataset
for traffic sign detection. Then, we utilize these parametrized
models to evaluate scenarios with one, two, and three ML
modules with and without proactive rejuvenation. Finally,
we discuss insights and implementation implications of the
different configurations.

A. Fine-tuning with a Real-world Traffic Sign Dataset

To find and test the input parameters of our reliability mod-
els, we trained three well-known NN models — AlexNet [50],
LeNet [51] and ResNet50 [52], [53] — on the German Traffic
Sign Recognition Benchmark (GTSRB) [54], a dataset with
real-world images of traffic signs. The dataset is already
divided into a training and test set. We used 80% of the
images from the former for training and the remaining 20%
for validation during training.

We implemented and trained the models using PyTorch
2.1.1 [55] for 20 epochs and with a batch size of 128 and
learning rate of 0.001, fixing the seed of the forch, numpy, and
random libraries to 38 for reproducibility. These parameters
are based on previous implementations and, while crucial for
achieving better results on each NN, they are not crucial for
a practical demonstration and feasibility of our approach.

After training, we used PyTorchFI [22] to inject weight
faults with the random_weight_inj function using the pa-
rameters (1,-10,30), which means a random weight of value
between -10 and 30 is inserted on the layer 1 of the NN. This is
to obtain reduced accuracy models to represent compromised
or accidentally faulty versions. Therefore, a single fault (i.e.,
weight change of one layer) was injected into each model. The

aim of this inject fault was to simulate the behavior of a bit-
flip or attack on an ML framework that would significantly
harm the capacity of the NN to classify an input correctly.
To produce faulty versions of each model with similar (re-
duced) accuracy, we used seeds equal to 5, 183, and 34 for
AlexNet, LeNet, and ResNet50, respectively. Table II shows
the obtained accuracies when evaluating the models with the
GTSRB test images.

TABLE II: Accuracy of healthy and compromised models
when classifying the GTSRB dataset.

Model Accuracy healthy Accuracy compromised
1. Alexnet 0.960095012 0.755423595
2. Resnet50 0.920981789 0.772050673
3. LeNet 0.930245447 0.751306413

Based on these three accuracy results, we computed the
values for the parameters of the DSPN models and the
reliability functions p, p’, and «. p is the complement of the
average accuracy of the healthy models:

p = 1 — average(accuracy_healthy(i)) (6)
i€{1,2,3}
where i is the model number indicated in Table II. Therefore,
the computed value was p = 0.062892584. Next, p’ is the
complement of the average accuracy of the compromised
models:

p’ =1 — average(accuracy_compromised (i)) (7
i€{1,2,3}

The computed value in this case was p’ = 0.240406440.
Lastly, o depends on the error set E; of each model and
on the intersection of these sets. To obtain these error sets,
we analyzed which input images from the testing set were
wrongly classified according to the ground truth. For the three-
version ML system, we compute « by Eq. 8 and 9, based on
Machida [13].

\E; N B

S i Al e |

ai i #] (8)
T max(|Eil [Ej)

o= Q1,2 + a;),s +as3)

The computed value was o = 0.369952542.

With «, p, and p’ in place, we can compute the reliability
functions in Eq. 5, representing the expected reliability when
evaluating a three-version ML systems with the module vari-
ants AlexNet, LeNet, and ResNet50 against the entire GTSRB
testing set (of 12630 images). To achieve this, we implemented
the voting rules from Section IV to evaluate the reliability with
which the ML system produces the correct outputs. We report
the evaluation for each of the different states through which
the model can transition based on our reliability function in
Table III. Recall that such states (i, j,k) are represented by
the number of healthy ¢, compromised j, and non-functional
k ML modules.

TABLE III: Output reliability results of the reliability functions
defined in Section V-B.

System state Reliability functions

(3,0,0) 0.988626295
(2,0,1) 0.976732729
2,1,0) 0.881542506
(1,0,2) 0.937107416
(1,1,1) 0.943896878
(1,2,0) 0.815870804
0,3,0) 0.926682718
0,2,1) 0.911061026
0,1,2) 0.759593560

B. DSPN-based Reliability Analysis

Based on the expected reliabilities values for individual
system states, we can estimate the reliability of a three-version
system by the DSPN model. We perform parameter studies and
analyze the impact of the individual parameters on the overall
system reliability.

We employ TimeNET [56] to run and analyze the DSPN
models and configure it with the parameters in Table IV. The
DSPN models used in our evaluation are available at [57]. We
follow Oboril et al. [58] and their estimation of the meantime
to compromise an AV module (1/)\. = 1523s) and mean
time to failure (1/A = 1523s) for the transitions Tc and TJ.
These parameters are naturally hard to estimate and highly
scenario-dependent. Our interpretation of these parameters
is in terms of the distributions of time that an adversary
needs to exploit a vulnerability and harm the ML module
without crashing it. Automated diversification techniques, such
as address space layout randomization, justify why this distri-
bution cannot degenerate to a fixed small amount, since the
adversary will always have to adjust its exploit to the current
layout. We estimate a recovery time of 0.5s and shall use
this as the mean time to repair a module during reactive or
proactive rejuvenation. We adopt a default value of 300s for
the rejuvenation interval (1/-), but will study the impact of
different values for this parameter.

Table V presents the reliability result for the different con-
figurations obtained by instantiating the models of Figures 2
and 3 with the above parameters and the reliability functions
E[R1,], E[R2y], and E[R3,] as reward metrics. As can be
seen, the two-version system with proactive rejuvenation out-
performs all other configurations. This is due to the voter
being allowed to skip producing an output if the functional
networks disagree. This result shall not hold when skipping
the production of an output is unsafe for the system. Proactive

TABLE IV: Default input parameters for the DSPN models.

Param Description Transition Value
o Error probability dependency - 0.369952
P Output failure probability (healthy) - 0.062892
/ Output failure probability (compromised) - 0.240406
1/Xc Mean time to compromise a module Tc 1523 s
1/ Module’s mean time to failure Tf 1523 s
1/p Mean time to reactive rejuvenate Tr 05s
1/pr Mean time to proactive rejuvenate Trj 05s
1/v Rejuvenation interval Trc 300 s

rejuvenation proves beneficial in any of the configurations.

TABLE V: Reliability results through DSPN simulation for
a single-, two- or three-version with and without proactive
rejuvenation.

Reliability
Configuration w/o rej. w/ rej.
Single-version (baseline) 0.848211 0.920217
Two-version 0.943875 0.967152
Three-version 0.903190 0.952998

C. Parameter Study

Next, we analyze the impact different values of the param-
eters have on the reliability of the different configurations.
Figu. 4 shows the sensitivity of the reliability of the individual
configurations to variations of the rejuvenation interval, dura-
tion, mean time to compromise, error dependency, inaccuracy
in the healthy state, and inaccuracy in the compromised state.

Proactive Rejuvenation is characterized by the rejuvena-
tion interval 1/ and by the time 1/u, it takes to rejuve-
nate a module. Figures 4 (a) and (b) present the reliability
behavior when varying these parameters, while keeping all
other parameters as in Table IV. As can be seen, more fre-
quent rejuvenation helps the system to keep a high reliability,
whereby the influence on the three-version and single-version
configuration are most significant. In the latter two, reliability
quickly decreases as rejuvenation periods become longer. In
contrast, variations of the rejuvenation time 1/, have only a
minimal effect on reliability (see Fig. 4 (b)). Another insight
is that even when varying the parameters 1/ and 1/u,, the
two-version system outperforms a three-version system.

Mean time to compromise/degrade a module (1/).). The
impact of strenghtening or weakening the adversary by varying
the mean-time-to-compromise in the range of [100s, 7000s]
is shown in Fig. 4 (c). As expected, higher values for 1/,
imply higher reliability for the system, as the models remain
in a healthy state for a longer time. Particularly, the single-
version systems are positively impacted when 1/, grows,
having the reliability improved by more than 12% and 14% for
the version with proactive rejuvenation compared to reactively-
only rejuvenated systems. The three-version system without
rejuvenation presented a different behavior, with its reliability
decreasing at the beginning (from the 100s - 1000s) and
starting to increase again after the 1000s. This behavior may
be explained by the fast transition of healthy ML modules to a
compromised state, and at the same time, these modules spend
extended time in the compromised state before transitioning
to the non-functional state to be recovered.

Error probability dependency between modules (o).
Fig. 4 (d) shows the sensitivity of the configurations to varia-
tions in the error probability dependency between modules. We
varied « in the range of [0.1, 1.0], where o = 0.1 means lower
error dependency and o = 1.0 means higher error dependency.
Note that a single-version system does not suffer any influence
from this parameter since all outputs originate from a single

1.00
0.98
E.06] T e
=2 —————— . .
5094
WD
_— & 0.92f v weaae
0.90 4090
100 300 500 700 900 00 05 1.0 1.5 2.0 2.5 3.0
1/v(s) 1/ pr (s)
(a) (b)

345 6 71 :)
1/X; (s) «a

02 03 04 05 06

/

0500 0.05 0.10 0.15 020 0.25
D p

(e) ()

— 3-version, rej «--+ 2-version, rej =--« gingle-version, rej

— 3-version, w/orej 2-version, w/o rej —— single-version, w/o rej

Fig. 4: Influence of (a) rejuvenation interval, (b) rejuvenation
duration, (c) mean time to compromise/degrade a module,
(d) error probability dependency between modules, (e) ML
modules inaccuracy when in a healthy state, and (f) ML
modules inaccuracy when in a compromised state over the
expect output reliability.

module, which processes all inputs. As expected, less error
dependency positively impacts the system’s reliability, espe-
cially when adopting time-based proactive rejuvenation. In all
scenarios, systems adopting such a rejuvenation mechanism
outperform those with reactive rejuvenation only. The latter
is seriously impacted as a grows. The reliability of the two-
version and three-version without rejuvenation drops by about
13% and 26% when varying o from 0.1 to 1.

ML modules inaccuracy when in a healthy state (p).
We analyzed this parameter for a range of [0.01, 0.23] since
one of the constraints for the reliability functions is p < p’.
Fig. 4 (e) shows the results, which confirm that employing
proactive rejuvenation is beneficial in all scenarios. However,
if the module inaccuracy is high (e.g., > 0.20, the reliability
improvement is marginal, and one may examine the trade-
offs of reliability improvement and the complexity of adding
such a mechanism to the system. Through the plot, it is also

possible to visualize a threshold where rejuvenation would be
beneficial, what happens when the value of p is below the
intersection of lines. Note that this threshold differs according
to the other input parameters, but using the proposed modeling
approach, it is possible to investigate it. According to the
results and considering the input parameters adopted, a single-
version system adopting rejuvenation performs better than a
three-version system without rejuvenation when p < 0.10. A
similar situation occurs when p > 0.13, the 2-version system
without rejuvenation outperforms the three-version system
adopting rejuvenation. Current state-of-the-art ML models
usually have an accuracy greater than 0.9 (i.e., p < 0.10) for
most use cases. Thus, implementing a time-based rejuvenation
mechanism would be attractive based on these results. In any
case, system designers could leverage this analysis to define a
more suitable system architecture.

ML modules inaccuracy when in a compromised state
(p'). We performed the same analysis by varying the inac-
curacy of compromised models in the range of [0.1, 0.6].
Fig. 4 (f) shows the sensitivity of reliability to variations of
this parameter. The plot shows that reliability in all system
configurations drops as p’ grows. However, adopting proactive
rejuvenation helps mitigate some of this reliability degra-
dation. While the reliability of systems adopting proactive
rejuvenation dropped less than 4%, the negative impact on the
reliability of systems with reactive rejuvenation was only more
than 10%. The most harmed configuration by this change of
p’ from 0.1 to 0.6 was the single-version ML system without
proactive rejuvenation. Here reliability dropped by 27%.

Optimal set of parameters. Although few parameters are
hard to control, such as the mean time to compromise and
mean time to failure, ensuring smaller values for p, p’, and
« during the developing/training phase can improve reliability
results for the N-version ML systems evaluated. For instance,
setting the smaller values analyzed for each parameter, p =
0.01, p’ = 0.1, and o = 0.1, would improve the reliability
of a three-version with proactive rejuvenation for 0.99487778
(= +4.5%) and a two-version with proactive rejuvenation for
0.9963003 (=~ +3%).

VII. MULTI-VERSION PERCEPTION SYSTEM WITH
REJUVENATION: A CASE STUDY

To evaluate the practicality of our approach, we imple-
mented a multi-version perception system with rejuvenation
for AVs and conducted the analysis using the CARLA AV
simulator [59]. Specifically, we focused on assessing the
impact of rejuvenation of a multi-version perception system
for driving safety. Through our empirical study, we addressj
the following research questions:

RQI: How effectively can a multi-version perception system
with time-triggered rejuvenation tolerate compromised and
non-functional ML models?

RQ2: How does the rejuvenation interval impact the safety
of a multi-version perception system?

To address RQI, we simulated a three-version perception
system incorporating a time-triggered rejuvenation mecha-

nism. Compromised ML models were generated using Py-
TorchFI, by introducing artificial faults into the ML models,
which simulate the effects of an attack or transient fault. We
then compared the AV driving behavior across eight scenarios
with rejuvenation to those without rejuvenation to assess its
impact on AV driving safety. To investigate RQ2, we varied
the rejuvenation intervals in the simulation and analyzed the
resulting differences in AV driving behavior to evaluate the
influence of rejuvenation frequency on system safety.

A. Experiments Setup

We utilize the CARLA AV simulator and the cooperative
driving co-simulation framework, OpenCDA [60], to simulate
various driving scenarios. We conduct the experiments on
a system equipped with an NVIDIA GeForce RTX 3090
GPU, an Intel® Core™ i9-10900K CPU @ 3.70GHz, 64GB
RAM, and running Windows 11 as the OS. The full im-
plementation based on OpenCDA is available in our open-
source release [61]. In the OpenCDA simulation, each AV
is equipped with sensors that capture data from both the
surrounding environment and the ego vehicle, such as 3D
LiDAR points and Global Navigation Satellite System (GNSS)
data. This collected data is processed by the perception and
localization systems, enabling the detection and localization of
objects. The resulting perception and localization outputs are
passed to the planning system. The planning system uses this
data to compute the AV’s trajectory, adjusting the vehicle’s
acceleration, speed, and steering based on the generated path.
The final trajectory and control instructions are then forwarded
to the control system, which executes the necessary commands
to control the vehicle’s movements. In this study, we focus on
the perception system. We select eight routes, with two routes
chosen from each of the maps Town02, Town03, Town04, and
Town05 in CARLA, as shown in Fig. 5. The starting points
of the routes are marked with ovals, while the endpoints are
indicated by stars. During these simulation runs, the ego AV
must navigate based on its perception system, which is respon-
sible for accurately detecting other vehicles and road obstacles.
This setup allows us to evaluate the performance of multi-
version perception systems with time-triggered rejuvenation
under diverse scenarios and road configurations.

We employ YOLOVS [62] in the perception module for
autonomous driving within CARLA. YOLOvVS is an ad-
vanced object detection framework that leverages a single-
stage detection pipeline, directly predicting bounding boxes
and class probabilities from images. Specifically, we deploy
different variants of YOLOv5S — YOLOvV5s6, YOLOvV5m6,
and YOLOvV516 — to construct healthy models. The different
variants enable us to simulate the multi-version perception
frameworks. We then compromise these models with Py-
TorchFI [22], leveraging PyTorchFI's runtime perturbation
feature for weights and neurons in DNNs. This functionality is
crucial for simulating real-world scenarios where models may
encounter unexpected disruptions. Like above, we employed
PyTorchFI's random_weight_inj function with a weight range
of (-100, 300) to mimic the conditions compromised models

10

(c) Town0O4 (d) Town05

Fig. 5: Adopted maps and routes in Town02, Town03, Town04,
and Town05 of CARLA simulator.

encounter, before assessing the multi-version perception sys-
tem under these perturbed states.

Parameters: In the simulation, each run is executed in one
of the routes and lasts approximately 30 seconds from the
starting point to the endpoint. Based on Oboril et al. [58],
where the MTBF is 0.4 hours in 1.4 hours of recording,
we set the mean time to compromise a module (1/X.) to 8
seconds. The module’s mean time to failure (1/)) is defined
as twice the meantime to compromise, set to 16 seconds. Both
the mean times to reactive (1/u) and proactive rejuvenation
(1/) are configured to 0.5 seconds. The default rejuvenation
interval (1/7) is set to 3 seconds, with further experiments
conducted to investigate the effects of varying this parameter.
The reduced parameter values aim to analyze system behavior
under failure conditions more frequently, without waiting for
specific failure events. The perception system begins with three
healthy models (i.e., H state), which become compromised se-
quentially after the defined time to compromise. Subsequently,
the models enter the non-functional () state after the specified
time to failure and are recovered following the time for reactive
rejuvenation. We also adopted here exponentially distributed
time for the parameters 1/\., 1/A, 1/u, and 1/p,. During
these states, time-based rejuvenation is randomly triggered at
deterministic intervals defined by the parameter 1/, with a
2/3 probability of prioritizing compromised models for reju-
venation. 2/3 probability was selected to balance the trade-off
between prioritizing compromised models and ensuring ade-
quate rejuvenation opportunities for non-compromised models.

As per our fault model (see Section III), we employ the
majority voting rule in the multi-version perception system.

When all three models are operational (i.e., in either the
or C state), the voter produces a perception output if at least
two models agree on the result. In the absence of agreement,
the voter does not generate any perception output, preventing
the AV from updating its driving properties such as speed,
acceleration, or steering. If one model becomes completely
non-functional (i.e., N state), the system operates in a two-
version configuration. In this scenario, the voting rule requires
both remaining models to output the same result for a valid
perception output. If the models disagree, no perception output
is produced, and its driving properties will remain unchanged.

Evaluation Metric: To compute driving safety, we measure
the collision rate as the ratio of collision frames to the total
frames. Additionally, we report the frame at which the first
collision occurs and the total number of frames as part of
our evaluation metrics. Each route is evaluated over five runs,
both with and without rejuvenation, and the average values
of the metrics, along with the total number of collisions
observed across these runs, are recorded. These metrics offer
an evaluation of the safety of the three-version perception
system with rejuvenation in different scenarios. In this study,
our focus is primarily on vehicle-to-vehicle collision scenarios.

B. Evaluation Results

In our study, we investigate the effects of a time-triggered
rejuvenation mechanism within multi-version perception sys-
tems implemented across eight distinct route scenarios for
AVs. We compare the collision data between systems with
rejuvenation (w/) and those without (w/0) to measure driving
safety. The experimental results are presented in Table VI. We
observe that the system with rejuvenation consistently avoid
collisions across all 40 runs in all tested routes, achieving
a collision rate of 0%. However, significant collision rates
are observed without rejuvenation, ranging from 9.70% to
54.13% across different routes. The number of collisions also
increases, with some scenarios recording collisions in all runs.
On average, the collision rate without adopting rejuvenations
is 33.54%, having a standard deviation of 18.53%, and with
the first collision frame happening on average at frame 287.
The results demonstrate the effectiveness of the rejuvenation
mechanism in enhancing driving safety when adopting multi-
version perception systems against compromised and non-
functional ML models, thereby significantly reducing the risk
of collisions. Furthermore, in systems with rejuvenation, the
ratio of skipped frames to the total is low (approximately 2%)
and, based on observations, does not lead to unsafe situations.

Answer to RQI. A multi-version perception system with
time-triggered rejuvenation can efficiently tolerate compro-
mised and faulty ML models, achieving 0% collision rates
across all tested routes.

Next, we analyze the effect of varying rejuvenation intervals
on the driving safety of multi-version perception systems in
AVs, focusing on route #1 in Town02 as a case study. Collision
data are compared across rejuvenation intervals (1/7) of 3, 5,
7, and 9 seconds. The results of the experiments are depicted in
Table VII. The findings reveal that shorter rejuvenation inter-

11

g TABLE VI Collision data of the multi-version perception

system w/ and w/o rejuvenation over different routes.

Route 1st coll. Total frames Coll. rate (%) #Coll.
w/ wlo w/ w/o w/ w/o w/ w/o
#1 NA 299 610 618 0.00 9.70 0/5 4/5
#2 NA 268 735 675 0.00 12.89 0/5 3/5
#3 NA 203 630 543 0.00 47.98 0/5 4/5
#4 NA 390 720 730 0.00 42.45 0/5 4/5
#5 NA 313 o644 757 0.00 52.25 0/5 5/5
#6 NA 383 663 684 0.00 33.97 0/5 4/5
#7 NA 204 626 661 0.00 14.91 0/5 4/5
#3 NA 241 630 680 0.00 54.13 0/5 5/5
Avg/Total NA 287 657 669 0.00 33.54 0/40 33/40

vals enhance driving safety by facilitating the rapid recovery of
compromised models, thereby preventing the accumulation of
perception errors. Notably, the first collision frame occurs later
as the rejuvenation interval decreases, further supporting the
safety benefits of more frequent rejuvenations. In contrast, ex-
tended rejuvenation intervals correlate with a higher frequency
of collisions, reflecting their negative impact on driving safety,
and correlating with less reliable perception outputs. Conse-
quently, the rejuvenation interval plays a critical role in the
effectiveness of rejuvenation within multi-version perception
systems, with shorter intervals improving autonomous driving
safety. Moreover, the first collision frame for the system with
rejuvenation also happens a bit later (on average at frame 347)
in comparison with the system without rejuvenation, where
the first collision happens on average at frame 287 (as shown
in Table VI). This indicates the system with rejuvenation
could delay the onset of erroneous outputs, providing the AV
additional time to respond and potentially avoid collisions.

TABLE VII: Impact of rejuvenation interval on the driving
safety.

1/ (s) Ist coll. Total Coll. rate #Coll.
3 NA 610 0.00% 0/5
5 526 627 1.27% 1/5
7 246 574 8.93% 2/5
9 270 632 10.44% 3/5

Avg/Total 347 611 5.16% 6/20

Answer to RQ?2. The rejuvenation interval directly impacts
the safety of a multi-version perception system, with shorter
intervals enhancing driving safety by facilitating quicker re-
covery of compromised and non-functional models.

C. Overhead Evaluation

We conduct a preliminary overhead evaluation focusing on
Route #1 in Town02 as a case study. We measure the average
frames per second (FPS), CPU, GPU usage, and their confi-
dence intervals (CI) of the perception process for three differ-
ent configurations of perception systems: the single-version,
the three-version with and without rejuvenation. Each setup is
tested in three runs, and the results are presented in Table VIII.
As expected, the single-version achieves the highest average
FPS with the lowest CPU and GPU usage. In contrast, the

three-version experiences lower FPS and higher CPU and GPU
usage due to the increased computational overhead of running
multiple ML models simultaneously. However, even with a
moderate performance drop, the system maintains reasonable
efficiency despite the additional load. The use of rejuvenation
does not present a statistical difference for GPU consumption
(between the three versions), as the CI overlaps, even though
the average presents a small decrease. All these observations
are based on our device settings; Therefore, the results may
vary depending on different hardware configurations.

TABLE VIII: Overhead comparison.

System FPS [CI] CPU-% [CI] GPU-% [CI]
Single-v 5.85 3.62 28.00
[5.8112, 5.8820] [3.5675, 3.6695] [24.3235, 32.1176]
Three-v 427 3.97 35.00
[4.2537, 4.2819] [3.9226, 4.0098] [33.3541, 36.6041]
Three-v w/rej 4.20 3.76 33.00

[4.1754, 4.2168] [3.6612, 3.8545] [31.0384, 34.9620]

D. Summary

The observed gap in the number of collisions in AV driving
between the multi-version perception systems w/ and w/o
rejuvenation shows the effectiveness of time-triggered reju-
venation as a critical safety mechanism for AVs. The rejuve-
nation process mitigates the negative impact of disruptions by
periodically refreshing the perception modules, thus enhanc-
ing the resilience of systems. Additionally, the system with
rejuvenation shows the potential to delay erroneous perception
outputs that could lead to collisions. The ability is particularly
significant in AV operations, where rapid decision-making is
essential to avoid accidents. It provides the AV with additional
time to detect and respond to potential hazards. Moreover,
the rejuvenation interval, in particular, plays a critical role in
determining the effectiveness of the rejuvenation mechanism.
Shorter rejuvenation intervals are more effective at minimizing
the accumulation of errors, ensuring the models remain accu-
rate for longer periods, and thereby improving overall driving
safety. Our case study focuses on limited scenarios within a
predefined layout, not accounting for real-world variabilities
like dynamic traffic and environmental changes. While we aim
to demonstrate our methodology’s feasibility, more scenarios
must be explored before generalizing to autonomous driving.

VIII. THREATS TO VALIDITY AND LIMITATIONS

Choice of ML models. The choice of ML models can
significantly influence the results, in particular their inaccuracy
and error correlation, as we have shown.

Multi-version ML and diversification. Our work focused
on single-, dual- and triple-version systems employing the de-
fined voting scheme (see Section IV). Evaluating the reliability
of multi-version ML systems considering more versions and
other voting schemes, such as weighted or approximate voting,
theoretically and experimentally is an important direction for
future work. Besides, while the goal of this paper is to evaluate
diversity in terms of the number of ML modules, other aspects
of diversification, such as input, ML models, and training
dataset diversity, can be considered in future work.

12

Rejuvenation. We understand that the rejuvenation of ML
modules works against certain types of faults, but it is not
effective against others, such as permanent faults on hardware
or adversarial attacks on sensor input data. However, it could
be effective against attacks that alter the installation of the
ML framework, in the case that the rejuvenation mechanism
reloads the entire ML module together with the frameworks
and libraries from a safe memory location. Another important
aspect is the balance of the rejuvenation interval, which is
shown to be critical. Optimizing it for a balance between safety
and computational overhead remains a challenge.

System design. While we propose a practical approach for
designing and evaluating N-version ML architectures, future
works may explore relevant design factors for the proposed
architecture, such as its impacts on performance, system avail-
ability, resource consumption, energy efficiency, and costs.
The costs associated with our approach and the performance
overhead are inherently related to the number of models used.

IX. CONCLUSION

This paper proposed and investigated a multi-version archi-
tecture adopting proactive rejuvenation for ML systems. We
specifically focused on how combining the two techniques
can improve the output reliability of ML systems and mit-
igate faults and malicious attacks. We used Petri-net-based
models to represent failures, possible malicious threats, and
the proactive rejuvenation mechanism while integrating them
with reliability functions, allowing us to derive the output
reliability of different system configurations. We performed
experiments using different ML models and a traffic sign
dataset using real-world images to fine-tune our models. We
evaluated different system configurations using the models
and extensively analyzed input parameters to find scenarios
where output reliability is maximized. Our results showed
that two-version systems can outperform three-version systems
when the voter can safely skip outputs. They also confirmed
that proactive rejuvenation could benefit multi-version ML
systems, especially when the ML module accuracy is high.
Lastly, we presented a case study by implementing a three-
version perception system with time-triggered rejuvenation in
an AV simulator to experimentally evaluate the impact of
rejuvenation in a safety-critical simulation environment. Our
evaluation showed that a multi-version perception system with
time-triggered rejuvenation can efficiently tolerate compro-
mised and non-functional models. In future work, we aim to
analyze the adoption of proactive rejuvenation mechanisms in
systems with more replicas and under different voting schemes
for perception and other systems.

ACKNOWLEDGMENT

This work was supported by JST SPRING Grant Num-
ber JPMJSP2124, and partly supported by JSPS KAKENHI
Grant Numbers 22K17871. This work has also been partially
supported by the Luxembourg Fond Nationale de Recherche
(FNR) and the German Research Council (DFG) through the
CORE Inter Project ReSAC (C21/1S/15741419).

[1]

[3]
[4]

[5]

[6]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

D. Gruyer, V. Magnier, K. Hamdi, L. Claussmann, O. Orfila, and
A. Rakotonirainy, “Perception, information processing and modeling:
Critical stages for autonomous driving applications,” Reviews in Con-
trol, vol. 44, pp. 323-341, 2017.

A. Toschi, M. Sanic, J. Leng, Q. Chen, C. Wang, and M. Guo,
“Characterizing perception module performance and robustness in
production-scale autonomous driving system,” in IFIP Int. Conf. on
Network and Parallel Computing, Springer, 2019, pp. 235-247.
Apollo Documentation, Apollo perception, 2019.

M. A. Hanif, F. Khalid, R. V. W. Putra, S. Rehman, and M. Shafique,
“Robust machine learning systems: Reliability and security for deep
neural networks,” in Int. Symp. on On-Line Testing And Robust System
Design, 2018.

S. Qiu, Q. Liu, S. Zhou, and C. Wu, “Review of artificial intelligence
adversarial attack and defense technologies,” Applied Sciences, vol. 9,
no. 5, p. 909, 2019.

A. Avizienis, “The n-version approach to fault-tolerant software,”
Trans. on software engineering, no. 12, pp. 1491-1501, 1985.

A. Gujarati, S. Gopalakrishnan, and K. Pattabiraman, “New wine in an
old bottle: N-version programming for machine learning components,”
Institute of Electrical and Electronics Engineers Inc., Oct. 2020,
pp. 283-286.

S. Latifi, B. Zamirai, and S. Mahlke, “Polygraphmr: Enhancing the
reliability and dependability of cnns,” in IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN), 2020.

F. Machida, “Using Diversities to Model the Reliability of N-version
Machine Learning System,” 2021.

Q. Wen and F. Machida, “Reliability models and analysis for triple-
model with triple-input machine learning systems,” in IEEE Conf. on
Dependable and Secure Computing (DSC), 2022.

P. Sousa, N. F. Neves, and P. Verissimo, “Proactive resilience through
architectural hybridization,” in Proceedings of the 2006 ACM Sympo-
sium on Applied Computing, ser. SAC *06, 2006, pp. 686—690.

M. Volp and P. Esteves-Verissimo, “Intrusion-tolerant autonomous
driving,” in IEEE Int. Symp. on Real-Time Computing, 2018.

F. Machida, “N-version machine learning models for safety critical
systems,” in 49th IEEE/IFIP Int. Conf. on Dependable Systems and
Networks Workshops (DSN-W), Jun. 2019, pp. 48-51.

J. Mendonga, F. Machida, and M. Volp, “Enhancing the reliability of
perception systems using n-version programming and rejuvenation,”
in 53rd IEEE/IFIP Int. Conf. on Dependable Systems and Networks
Workshops (DSN-W), 2023, pp. 149-156.

A. Wu, A. H. M. Rubaiyat, C. Anton, and H. Alemzadeh, “Model
fusion: Weighted n-version programming for resilient autonomous
vehicle steering control,” in 2018 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 1IEEE, 2018,
pp. 144-145.

H. Xu, Z. Chen, W. Wu, Z. Jin, S.-y. Kuo, and M. Lyu, “Nv-dnn:
Towards fault-tolerant dnn systems with n-version programming,” in
IEEE/IFIP Int. Conf. on Dependable Systems and Networks Workshops
(DSN-W), 2019.

R. E. Lyons and W. Vanderkulk, “The use of triple-modular redun-
dancy to improve computer reliability,” IBM Journal of Research and
Development, vol. 6, no. 2, pp. 200-209, 1962.

B. Littlewood, P. Popov, and L. Strigini, “Modeling software design
diversity: A review,” ACM Comput. Surv., vol. 33, no. 2, 2001.

M. Ege, M. Eyler, and M. Karakas, ‘“Reliability analysis in n-version
programming with dependent failures,” IEEE Comput. Soc, 2001,
pp. 174-181.

J. Arlat, A. Costes, Y. Crouzet, J. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerant systems,” IEEE
Trans. on Computers, vol. 42, no. 8, pp. 913-923, 1993.

M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75-82, 1997.

A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve,
C. W. Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime per-
turbation tool for dnns,” in 50th IEEE/IFIP Int. Conf. on Dependable
Systems and Networks Workshops (DSN-W), 2020, pp. 25-31.

S. Laskar, M. H. Rahman, and G. Li, “Tensorfi+: A scalable fault in-
jection framework for modern deep learning neural networks,” in [EEE
Int. Symp. on Software Reliability Engineering Workshops (ISSREW),
2022, pp. 246-251.

13

[24]

(25]

[26]

[27]

(28]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. Grife, Q. S. Sha, F. Geissler, and M. Paulitsch, “Large-scale
application of fault injection into pytorch models -an extension to py-
torchfi for validation efficiency,” in 2023 53rd IEEE/IFIP International
Conference on Dependable Systems and Networks - Supplemental
Volume (DSN-S), 2023, pp. 56-62.

J. Hoefer, F. Kempf, T. Hotfilter, F. Kre}, T. Harbaum, and J. Becker,
“Sifi-ai: A fast and flexible rtl fault simulation framework tailored
for ai models and accelerators,” in Proceedings of the Great Lakes
Symposium on VLSI 2023, ser. GLSVLSI *23, Knoxville, TN, USA:
Association for Computing Machinery, 2023, pp. 287-292.

S. Pappalardo, A. Ruospo, I. O’Connor, B. Deveautour, E. Sanchez,
and A. Bosio, “A fault injection framework for ai hardware acceler-
ators,” in 2023 IEEE 24th Latin American Test Symposium (LATS),
2023, pp. 1-6.

N. Piazzesi, M. Hong, and A. Ceccarelli, “Attack and fault injection in
self-driving agents on the carla simulator — experience report,” in Com-
puter Safety, Reliability, and Security: 40th International Conference,
SAFECOMP 2021, York, UK, September 8-10, 2021, Proceedings,
York, United Kingdom: Springer-Verlag, 2021, pp. 210-225.

Q. Wen, J. Mendonga, F. Machida, and M. Vo6lp, “Enhancing au-
tonomous vehicle safety through n-version machine learning systems,”
in IJCAI Workshop on Artificial Intelligence Safety (AlSafety), CEUR
Workshop Proceedings, 2024.

K. S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications. John Wiley & Sons, Ltd, 2016.

R. Pietrantuono and S. Russo, “Software aging and rejuvenation in the
cloud: A literature review,” in IEEE Int. Symp. on Software Reliability
Engineering Workshops (ISSREW), 2018, pp. 257-263.

N. Leveson and J. Stolzy, “Safety analysis using petri nets,” IEEE
Trans. on Software Engineering, vol. SE-13, no. 3, pp. 386-397, 1987.
D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of
software aging and rejuvenation studies,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 10, no. 1, pp. 1-34,
2014.

A. M. M. Paing, “Analysis of availability model based on software
aging in sdn controllers with rejuvenation,” in JEEE Conf. on Computer
Applications (ICCA), 2020.

T. Thein and J. Sou Park, “Availability analysis of application servers
using software rejuvenation and virtualization,” Journal of computer
science and technology, vol. 24, no. 2, pp. 339-346, 2009.

M. Marsan and G. Chiola, “On petri nets with deterministic and
exponentially distributed firing times,” in Advances in Petri Nets 1987,
vol. 266, 1987, pp. 132-145.

C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17322-17341, Aug.
2017.

X. Liu, L. Xie, Y. Wang, J. Zou, J. Xiong, Z. Ying, and A. V. Vasilakos,
“Privacy and security issues in deep learning: A survey,” IEEE Access,
vol. 9, pp. 45664593, 2021.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D.
Mukhopadhyay, “A survey on adversarial attacks and defences,” CAAI
Transactions on Intelligence Technology, vol. 6, no. 1, pp. 25-45, 2021.
A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards
deep learning models resistant to adversarial attacks, 2019.

N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14410-14 430,
2018.

M. C. Tol, S. Islam, A. J. Adiletta, B. Sunar, and Z. Zhang, “Don’t
knock! rowhammer at the backdoor of dnn models,” in 2023 53rd
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2023, pp. 109-122.

Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep learning
implementations,” in 2018 IEEE Security and Privacy Workshops
(SPW), 2018, pp. 123-128.

P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-
event upset in digital microelectronics,” IEEE Transactions on Nuclear
Science, vol. 50, no. 3, pp. 583-602, 2003.

G. Klein, J. Andronick, K. Elphinstone, et al., “Sel4: Formal verifi-
cation of an operating-system kernel,” Commun. ACM, vol. 53, no. 6,
pp. 107-115, Jun. 2010.

I. P. Gouveia, M. Volp, and P. Esteves-Verissimo, “Behind the last line
of defense: Surviving soc faults and intrusions,” Computers & Security,
vol. 123, p. 102920, 2022.

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

J. Kocié¢, N. Jovicié, and V. Drndarevié¢, “Sensors and sensor fusion
in autonomous vehicles,” in 2018 26th Telecommunications Forum
(TELFOR), IEEE, 2018, pp. 420-425.

D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” Journal
of the ACM (JACM), vol. 33, no. 3, pp. 499-516, 1986.

A. Matovic, R. Graczyk, F. Lucchetti, and M. Volp, “Consensual Re-
silient Control: Stateless Recovery of Stateful Controllers,” in 35th Eu-
romicro Conference on Real-Time Systems (ECRTS 2023), ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 262, Dagstuhl,
Germany: Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023,
14:1-14:27.

F. Machida, “On the diversity of machine learning models for system
reliability,” in Pacific Rim Int. Symposium on Dependable Computing,
PRDC, 2019, pp. 276-285.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural infor-
mation processing systems, vol. 25, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770-778.

Nvidia, Resnet v1.5 for pytorch, 2023.

14

[54]

[55]
[56]

(571

(58]

[59]

[60]

[61]

[62]

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic
sign recognition benchmark: A multi-class classification competition,”
in Int. Joint Conference on Neural Networks, 2011.

The Linux Foundation, Pytorch, 2023.

A. Zimmermann, “Modelling and performance evaluation with timenet
4.4 in Quantitative Evaluation of Systems, Cham: Springer, 2017,
pp. 300-303.

J. Mendonga, Petri net models for reliability analysis of n-version
machine learning systems, https://doi.org/10.5281/zenodo. 15240786,
Zenodo, 2025.

F. Oboril, C. Buerkle, A. Sussmann, S. Bitton, and S. Fabris, “MTBF
Model for AVs - From Perception Errors to Vehicle-Level Failures,”
in IEEE Intelligent Vehicles Symposium (IV), 2022.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Ist Conference on
Robot Learning, 2017, pp. 1-16.

R. Xu, H. Xiang, X. Han, X. Xia, Z. Meng, C.-J. Chen, C. Correa-
Jullian, and J. Ma, “The opencda open-source ecosystem for coopera-
tive driving automation research,” IEEE Trans. on Intelligent Vehicles,
vol. 8, no. 4, pp. 2698-2711, 2023.

Q. Wen, Multi-version perception system with rejuvenation, https://doi.
org/10.5281/zenodo.15078611, Zenodo, version vl1, 2025.

G. Jocher, A. Stoken, J. Borovec, et al., ultralytics/yolov5: v5.0 -
YOLOvS5-P6 1280 models, AWS, Supervise.ly and YouTube integrations,
version v5.0, Apr. 2021.

