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Abstract—Unmanned Aerial Vehicles (UAVs) have emerged as
a transformative technology for real-time road traffic monitoring,
offering enhanced efficiency and responsiveness to modern traffic
management systems. However, the resource limitations of UAVs
and the dynamic nature of traffic densities present significant
challenges for continuous operation. To address these constraints,
this study proposes a vehicle-density-aware adaptive offloading
mechanism that dynamically alternates between local processing
and task offloading to fog nodes, based on real-time traffic condi-
tions. The mechanism operates in three distinct modes: Low-CPU
Mode for low vehicle density, Full Offloading Mode for moderate
density, and Local Processing Mode for high-density scenarios.
Preliminary results reveal that the proposed VD-aware adaptive
offloading mechanism effectively balances performance, resource
efficiency, and communication costs. It maintains competitive
accuracy, optimizes throughput, and dynamically manages CPU
utilization and communication overhead. These findings highlight
the adaptability and efficiency of the proposed mechanism,
making it an ideal solution for UAV-based road traffic monitoring
in dynamic and resource-constrained environments.

Index Terms—Fog computing, Road traffic monitoring, Task
offloading, UAV, Vehicle density

I. INTRODUCTION

Road traffic monitoring has become a critical concern
due to increasing challenges in managing congestion and
ensuring safety[[1][2][3][4]. Modern traffic monitoring systems
provide real-time insights into traffic patterns and incidents,
enabling authorities to optimize infrastructure, enhance safety,
and reduce environmental impacts[S[][6][7][8]]. Traffic conges-
tion significantly affects economic productivity, environmental
quality, and road safety by increasing fuel consumption, costs,
and pollution. For instance, in 2014, road congestion in the
United States led to $160 billion in additional costs, with
similar economic impacts observed globally [9][10]. This
issue is exacerbated by the growing number of vehicles and
aging transportation infrastructure, emphasizing the need for
intelligent and efficient traffic monitoring solutions.

Traffic congestion often results from incidents such as
traffic accidents, which impede flow and create risks to
public safety. Advanced monitoring systems, including UAV-
based and smartphone-based solutions, have been developed
to address these challenges [11][12]][13]]. While smartphone-
based systems are accessible and convenient, they rely on user
reports, which can be delayed or inaccurate [14][15][16]. In
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contrast, UAV-based systems provide real-time aerial monitor-
ing, enabling comprehensive road coverage, timely accident
detection, and access to hard-to-reach locations. This makes
them highly effective for improving traffic management and
public safety. Traditional monitoring methods, such as fixed
infrastructure-based systems, lack the adaptability and cov-
erage needed to address dynamic traffic patterns in modern
cities. UAVs, with their mobility and scalability, have emerged
as a promising alternative, offering high-resolution real-time
data. However, UAVs are constrained by limited computational
power, memory, and energy, which present challenges in real-
time applications. Additionally, the dynamic nature of traffic
density—ranging from low to high—requires varying levels of
computational effort. Existing processing methods, such as full
offloading to fog nodes or exclusive local processing, often fail
to balance performance and resource efficiency. Full offloading
can create network bottlenecks, while local processing can
overwhelm the UAV’s limited resources.

To address these challenges, we propose a vehicle-density-
aware (VD-aware) adaptive offloading mechanism designed to
dynamically adjust task allocation based on real-time traffic
density. The VD-aware adaptive offloading mechanism oper-
ates in three modes: Low-CPU Mode for resource-efficient
processing in no/low-density scenarios, Full Offloading Mode
for maximizing throughput in moderate-density conditions,
and Local Processing Mode for ensuring accuracy in high-
density situations. To effectively evaluate the adaptability of
our proposed approach, we designed a dynamic evaluation
scenario that simulates real-world traffic conditions with vary-
ing vehicle densities. The implementation uses an NVIDIA
Jetson Nano as the on-board processing UAV and a PC as
the fog node to process offloaded tasks. These devices are
connected via a Wi-Fi access point, simulating a real-world
UAV-fog computing environment. Our evaluation considers
key performance metrics, including accuracy, throughput, CPU
usage, and communication cost to comprehensively compare
the VD-aware adaptive offloading mechanism with existing
approaches. The evaluation results demonstrate that the VD-
aware adaptive offloading method achieves a balanced trade-
off across accuracy, throughput, resource usage, and commu-
nication cost compared to existing methods. By integrating
our adaptive mechanism, we aim to improve the overall



performance and resource efficiency of UAV-based road traffic
monitoring systems.

The rest of the paper is organized as follows. Section 2
reviews related research on UAV-based road traffic monitoring
and computational offloading strategies, highlighting the gaps
addressed in this research. Section 3 presents the proposed
VD-aware adaptive offloading mechanism, detailing the oper-
ational mode and decision-making process. Section 4 describes
the experimental setup, including the evaluation scenario,
hardware configuration, and performance metrics. Section 5
discusses the experimental results, comparing the VD-aware
adaptive offloading mechanism with existing approaches in
terms of accuracy, throughput, CPU usage, and communication
cost. Finally, Section 6 concludes the paper and outlines
potential directions for future research.

II. RELATED WORK

Fog and edge computing have emerged as essential
paradigms for real-time data processing, enabling efficient and
low-latency solutions for applications like road traffic monitor-
ing. By decentralizing computational resources, fog computing
reduces dependence on centralized cloud systems, enhancing
both latency and bandwidth utilization [[17]]. UAV-based sys-
tems, in particular, significantly benefit from this paradigm,
as they require quick and resource-efficient decision-making
to effectively support real-time tasks such as road traffic
monitoring.

A. UAV-Based Road Traffic Monitoring

UAVs are increasingly employed in road traffic monitor-
ing due to their mobility, flexibility, and ability to capture
aerial views of traffic conditions. Applications include vehicle
counting, congestion detection, and accident reporting. These
systems rely heavily on image processing techniques such as
real-time object detection, classification, and tracking [18[[19].
Recent research has demonstrated the effectiveness of fog
computing in traffic management systems. For example, [20]]
proposed an Intelligent Traffic Congestion Mitigation Sys-
tem (ITCMS) that utilizes fog computing to address traffic
congestion in densely populated smart cities. The system
uses edge processing to reduce communication bandwidth and
enable real-time decision-making, resulting in improved traffic
efficiency and reduced latency. Furthermore, edge computing
platforms have been developed for real-time traffic monitoring
using computer vision techniques [21l]. These systems can
perform tasks such as congestion detection and speed mon-
itoring without relying on cloud infrastructure, demonstrating
the potential for low-latency, on-site processing in traffic
management applications.

However, the dynamic nature of road traffic presents chal-
lenges in processing high-resolution data in real-time, par-
ticularly under resource-constrained environments. Existing
studies often focus on either improving detection accuracy
or reducing processing latency but rarely address the balance
between these factors in dynamic traffic scenarios.
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B. Computational Offloading Strategies

Several computational offloading strategies have been pro-
posed to optimize resource utilization in UAV-enabled fog
computing systems. For example, adaptive offloading tech-
niques, such as PA-offload, focus on balancing performance
and service availability by dynamically deciding between local
processing and fog offloading [22]. These methods often
use probabilistic models to account for resource constraints
and environmental uncertainties. Fuzzy-based offloading ap-
proaches [23] utilize object detection confidence levels to
determine whether tasks should be offloaded to fog nodes
or processed locally, achieving a balance between accuracy
and computational load. Resource-aware frameworks like
Resource-aware video streaming (RAViS) [24] extend these
strategies by continuously monitoring CPU usage and adjust-
ing processing rates dynamically. Such frameworks ensure
resource-efficient operations, especially in UAV systems with
limited onboard computational capabilities. These approaches
emphasize adaptability in managing workloads, which is im-
portant requirement for UAV-based road traffic monitoring.

C. Contribution of This Work

Unlike existing approaches that primarily focus on static
metrics such as resource availability or detection accuracy, our
proposed VD-aware adaptive offloading mechanism introduces
vehicle density as a key decision criterion. By dynamically
switching between Low-CPU, Full Offloading, and Local
Processing modes based on real-time vehicle density, the
proposed method is expected to balance performance and
resource efficiency. A simple illustration of our system can be
seen in Figure 1. This contribution bridges the gap between
dynamic workload adaptation and resource-constrained UAV
systems in the context of road traffic monitoring.

III. PROPOSED APPROACH

To address the challenges of dynamic traffic conditions
and resource limitations in UAV-based road traffic monitor-
ing, we propose a VD-aware adaptive offloading mechanism
as shown in Figure 2. This approach dynamically allocates
computational tasks based on real-time vehicle density, switch-
ing between three operational modes: Low-CPU Mode, Full
Offloading Mode, and Local Processing Mode. Vehicle density
(py), defined as the number of vehicles per square meter
(vehicles/m?), is chosen as the key decision criterion due



TABLE I SUMMARY OF DIFFERENT COMPUTING MODES

Mode Processing Location Advantages Disadvantages

Local Processing UAV High  Accuracy &  Network High UAV Load & Low Throughput
Communication-independent

Low-CPU UAV Low UAV Load & Network Low throughput & Low Accuracy
Communication-independent

Full Offloading Fog Node Low UAV Load & High Throughput Low  Accuracy &  Network

Communication-dependent

LOW_CPU_Mode:
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Fig. 2 VD-Aware Adaptive Offloading Mechanism

to its direct correlation with computational demands. This
correlation has been observed in our preliminary experiments.
As p, increases, the number of detected objects in each frame
rises, leading to higher processing complexity, increased infer-
ence time, and greater resource consumption. In low-density
scenarios, fewer objects are detected, requiring minimal com-
putational resources and enabling resource-efficient operation.
In moderate-density conditions, faster vehicle movements and
varying object detection requirements make fog-based offload-
ing crucial to ensure faster detection (high throughput). High-
density traffic scenarios, on the other hand, necessitate local
processing to maintain detection accuracy of detection by large
number of vehicles. Table 1 summarizes the three operational
modes of the proposed VD-aware adaptive offloading mech-
anism, highlighting the corresponding processing locations,
advantages, and disadvantages of each mode.

In Low_CPU_Mode, which is activated when the vehi-
cle density is low, the UAV processes frames with reduced
resolution (e.g., 300x200 pixels) and limits the number of
detected vehicle to the top 5 based on confidence scores.
Additionally, the process priority is lowered to conserve energy
and minimize resource usage. This mode ensures that the
system remains efficient while maintaining readiness for any
workload changes.

The Full_Offloading_Mode is triggered under moderate
traffic density. In such conditions, gaps in the traffic allow
vehicles to move faster, requiring quicker frame analysis. The
UAV offloads frames to a fog node, where the server performs
object detection. By leveraging the computational resources of
the fog node, this mode maximizes throughput while reducing
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Fig. 3 Decision-making process state diagram

the UAV’s computational burden.

When the traffic density is high, the Lo-
cal_Processing_Mode is activated to ensure high detection
accuracy. Under these conditions, vehicles often move slowly
or are stationary, making local processing a more efficient and
reliable option compared to offloading. This mode eliminates
potential network delays caused by offloading, which could
reduce detection accuracy. To further illustrate the dynamic
decision-making process, Figure 3 provides a state diagram
depicting the transitions between the three operational modes.
The transitions are determined by the real-time vehicle
density (p,) monitored every 5 seconds.

Threshold variables T}, and T}, are introduced to deter-
mine transitions between modes, with their values adjustable
depending on the scenario. Starting from the Low-CPU Mode,
if the p, increases and exceeds Tj,,, the system transitions
to the Full Offloading Mode, enabling the UAV to offload
computational tasks to the fog node for efficient throughput
in moderate-density traffic. Similarly, as p, surpasses T} g,
the system shifts to Local Processing Mode to ensure accurate
detection by handling the computational workload directly on
the UAV. Conversely, when the p, decreases below Tj;4p, the
system transitions from Local Processing Mode back to Full
Offloading Mode to balance throughput and resource usage
during moderate traffic. Finally, as p,, below T}, the system
returns to Low-CPU Mode, conserving resource by reducing
resolution and limiting processing demands. These transitions,
monitored every 5 seconds, ensure adaptability to dynamic
traffic conditions while maintaining optimal performance and
resource efficiency.

IV. EXPERIMENTAL SETUP

To evaluate the performance of the proposed vehicle-
density-aware adaptive offloading mechanism, an experimental
setup was designed with the following components:



fog node. The detailed explanation of each evaluation metric
is as follows:

o Accuracy:

Fig. 4 Sample of Image Datasets

A. Hardware and Software Configuration

To evaluate the performance of the proposed VD-aware
adaptive offloading mechanism, an experimental setup was
designed using specific hardware and software. The hardware
included an NVIDIA Jetson Nano 4GB as the UAV processing
unit and a PC with 16GB RAM and an Intel Core i3-13100H
serving as the fog node. The Jetson Nano simulated the UAV’s
onboard processing, while the PC acted as the fog node to
handle offloaded tasks. Both devices were connected to the
same Wi-Fi access point, which served as the communication
link, simulating a base station’s role in a real-world UAV-fog
computing scenario. The experiments were conducted using
Python 3.8 with libraries such as OpenCYV, PyTorch, and psutil
for performance monitoring. The YOLOv8 model was used for
vehicle detection, and the input resolution of the road traffic
scene captured by the UAV was set to 600x400.

B. Data Collection

The dataset used for training the YOLOv8 model consisted
of 1041 annotated vehicle images from real-world bird’s-eye
view perspectives as shown in Figure 4 [23]]. The experiments
themselves were conducted using GTA V as a simulator to
generate diverse traffic scenarios [26]][27]. These scenarios
represented varying traffic densities: low density, moderate
density, and high density in four minute. This combination
of real-world data for training and simulated environments for
testing ensured a comprehensive evaluation of the proposed
mechanism.

C. Evaluation Metrics

The evaluation focused on four key metrics: accuracy,
throughput, CPU usage, and communication cost. Accuracy
was measured as the proportion of correctly detected vehicles
compared to the ground truth, while throughput was assessed
in frames per second (FPS) to evaluate processing speed.
CPU usage was monitored on both UAV nodes to analyze
computational load. Communication cost was measured as the
time required for data transmission between the UAV and the

We manually evaluated the accuracy of the object de-
tection on a frame-by-frame basis using the following
formula:

TP
Precision = ———— 1
recision TP+ FP (1)
TP
Recall = ———— 2
TPy EN @
F1 Score — 2 x Precision X Recall. 3)

Precision + Recall

where TP is True Positives (correctly detected vehicles),
FP is False Positives (incorrectly detected vehicles), and
FN is False Negatives (missed vehicles that should have
been detected). Finally, we obtained an average of F1
score. We used F1 Score metric to measure accuracy. The
F1 score is particularly suitable in situations where there
is an imbalance between positive and negative detections,
as it considers both precision (the proportion of correct
detections out of all detected) and recall (the proportion
of actual vehicles correctly detected).

Throughput:

Throughput is measured in Frames Per Second (FPS) and
indicates how many frames the system can process in one
second. To obtain the FPS value, we need to determine
the detection time. Detection time represents the total
time for running the object detection model until obtain
the final detection output. In the full offloading scenario,
the total detection time is the sum of the UAV processing
time (UPT), the communication delay between the UAV
and the fog node (CD), and the fog node processing time
(FPT).

Detection Time (offloading) = UPT + CD + FPT, (4)

FPS provides insight into the system’s ability to handle
real-time traffic monitoring. Since there are 1000 mil-
liseconds in one second, the FPS can be calculated using
the formula as:

- 1000
"~ Detection Time (ms)’

FPS 4)
CPU Usage:

We monitored CPU usage during the experiments. This
metric helps assess how much computational resources
were consumed by the UAV node, indicating the effi-
ciency of different mechanism. The decision to prioritize
CPU usage over GPU usage stemmed from practical
considerations. CPU performance often represents a bot-
tleneck in UAV systems. Many real-world UAV deploy-
ments face constraints in onboard CPU resources, making
it critical to optimize CPU usage for energy efficiency
and system performance. This focus provided valuable in-
sights into the system’s behavior under conditions where
GPU acceleration may not always be feasible.
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Fig. 5 Varying vehicle density of the evaluation scenario

o Communication Cost:

We evaluated the communication cost associated with
data transfer between the UAV and the fog node. This
metric captures the total time of transmitting video frames
from the UAV to the fog node and receiving the processed
results. Comparing the communication cost across all
approaches provides insights into the trade-offs between
offloading strategies. By analyzing this metric, we aim
to highlight the conditions under which our VD-aware
adaptive offloading mechanism outperforms other meth-
ods, balancing processing efficiency and communication
overhead.

D. Evaluation Scenario

The evaluation scenario was designed to simulate dynamic
traffic conditions with varying vehicle densities over a 4-
minute video as shown in Figure 5. In the initial phase, the
road alternated between being empty and having an incremen-
tal increase in vehicle density. For example, during the first
5 seconds, there were 0 vehicles/ m?2. In the next 5 seconds,
1 vehicle/m? appeared, followed by 0 vehicles/m? again.
This alternating pattern continued with an increasing vehicle
density until reaching a maximum of 5 vehicles/m?. In the
middle phase, the scenario transitioned to a cumulative traffic
pattern where vehicle density increased one by one every 5
seconds without disappearing from the frame, reaching up
to 20 vehicles/m?. After this peak density, vehicles began
decreasing one by one every 5 seconds, simulating a gradual
reduction in traffic until the road was completely empty.
This multi-phase scenario was designed to comprehensively
evaluate the system’s adaptability to varying traffic densities.

E. Comparison Target

In this evaluation, we compare the performance of the
proposed approach with four different baseline methodologies
as presented below.

o VD-aware Adaptive Offload:
We implemented the VD-aware adaptive offloading ap-
proach presented in Section This approach dynami-
cally adjusts task allocation among Low-CPU, Full Of-
floading, and Local Processing modes based on real-time

vehicle density p,. In this evaluation, we set 7;,,, and
Thign to 3 and 15 (vehicles/m?), respectively. These
values are determined by preliminary analysis and ob-
servations to switch the computation modes effectively
depending on vehicle densities.

Fuzzy-based Decision:

Tasks are offloaded to a fog node when object detection
confidence scores are lower and processed locally when
confidence scores exceed a threshold, using a fuzzy
neural network [23]]. To replicate the decision-making
mechanism from the referenced study, we implemented
a fuzzy control system to determine task offloading
decisions. The system employs three key parameters: the
average confidence of detected objects Fy;, the number
of detected objects Nypj, and the confidence level of
the decision Cop,j. The input variables Fp; and Nop;
were mapped to seven linguistic variables Negative Big
(NB), Negative Medium (NM), Negative Small (NS),
Zero (Z0O), Positive Small (PS), Positive Medium (PM),
Positive Big (PB). A fuzzy rule base, derived from the
referenced study, was constructed to guide the control
mechanism. This rule base includes 49 rules, where
combinations of F,,; and N,p,; determine the output
Cob; using Sugeno-style fuzzy inference. Based on the
computed Copj, the system decides whether to offload
computations to the Fog Node or process locally at
the Edge Node. A threshold R,p,; of 0.5 for Cop; was
empirically chosen to balance processing accuracy.
RAViS framework:

RAViS framework aims to optimize resource availability
while maintaining accuracy [24]. In this case, we use
CPU usage thresholds to decide whether to continue
process or stop the tasks. This method is designed to
optimize resource usage by dynamically monitoring the
system’s CPU utilization and temporarily suspending ob-
ject detection when the CPU usage exceeds a predefined
threshold. The system enters a “paused” state for 10
seconds whenever the CPU usage surpasses 85%. While
in this state, the object detection process is stopped, and
video frames are annotated with a “Detection Paused”
message, ensuring continuity in video output without
detection overhead. This is expected to reduce CPU
overload and ensure stable system performance.

Full Offloading:

Full Offloading is a strategy where all computational
tasks, such as object detection and tracking, are entirely
offloaded from the UAV to a fog node. This approach
leverages the fog node’s higher processing power to
achieve fast and reliable results, making it well-suited for
scenarios with high computational demands or limited
UAV resources. The main advantage is its ability to
handle large workloads without overloading the UAV.
However, it is highly dependent on network reliability
and communication latency.

Local Processing:

Local Processing refers to handling all computational
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Fig. 6 Accuracy comparison of different approaches

tasks on the UAV itself without offloading to external
nodes. This approach avoids network dependencies, en-
suring consistent performance even in environments with
poor connectivity. Local Processing is advantageous in
scenarios requiring high accuracy and low latency, as
it eliminates potential delays caused by network com-
munication. However, the UAV’s onboard computational
resources are often limited, which can lead to higher CPU
usage and lower throughput.

V. RESULTS

We evaluated our proposed approach in comparison to
baseline methods, focusing on accuracy, throughput, CPU
usage, and communication cost. The analysis highlights the
adaptability, resource efficiency, and trade-offs of each method
under varying traffic conditions, showcasing the advantages
and limitations of the proposed approach.

A. Accuracy

VD-aware adaptive offloading mechanism achieves a com-
petitive F1 Score of 0.88, demonstrating its ability to balance
accurate detection with adaptability to varying traffic densities
as shown in Figure 6. While slightly outperformed by the
Local Processing (LP) method, which achieves the highest F1
Score of 0.89. The Fuzzy-Based Decision approach follows
closely with an F1 Score of 0.87. The RAViS Framework,
driven by CPU usage thresholds, achieves the lowest F1 Score
of 0.81, indicating that its focus on resource management
comes at the cost of detection accuracy. On the other hand,
the Full Offloading (FO) approach achieves an F1 Score of
0.84, slightly lower than the VD-aware adaptive offloading
mechanism, due to communication overhead.

B. Throughput

As shown in Figure 7, the throughput of VD-aware
adaptive offloading mechanism fluctuates significantly during
moderate-density conditions, where the system effectively
offloads tasks to the fog node. However, the throughput drops
during low-density conditions, where resource usage is mini-
mized with Low-CPU mode, and during high-density condi-
tions, where local processing mode dominates. This fluctuation
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reflects the adaptability of the VD-aware adaptive offloading
mechanism to dynamically changing traffic workloads. In con-
trast, the Fuzzy-Based Decision, RAViS Framework, and Local
Processing (LP) methods maintain steady but low throughput,
averaging around 1-2 FPS. The low throughput of the Fuzzy-
Based Decision method occurs because, even when tasks are
offloaded to the fog node, local processing still performs calcu-
lations, which increases detection time and limits throughput.
The RAViS Framework and LP methods are constrained by
the limited computational resources of the UAV as it relies
on localized processing. The Full Offloading (FO) method
achieves the highest throughput, maintaining an average of
approximately 14-15 FPS throughout the experiment due to
its reliance on the powerful fog node for all computational
tasks. However, this comes with a significant dependency on
network stability.

C. CPU Usage

The CPU usage of VD-aware adaptive offloading mech-
anism remains stable and moderate, averaging around 40%
throughout the experiment as shown in Figure 8. This reflects
the system’s ability to dynamically transition between modes
based on traffic density, avoiding excessive strain on the UAV
while maintaining efficient operation. In contrast, the Fuzzy-
Based Decision approach shows slightly higher CPU usage,



Communication Cost Comparison

500 505.88 Approach

B 1: VD-aware Offload
[ 2: Fuzzy-based Decision
[0 3: RAVIS Framework
[ 4: Local Processing
=1 5: Full Offloading

400

300

Total Cost (s)

100

0.00 0.00
4 5

2

3
Approach Index

Fig. 9 Communication cost comparison of different approaches

averaging between 45%. While it doesn’t employ an explicit
Low-CPU Mode like the VD-aware adaptive offloading mech-
anism, its lower CPU usage compared to Local Processing
(LP) and RAViS Framework is due to its selective offloading
mechanism. The approach relies on fuzzy logic to decide
whether to offload tasks or process them locally based on
bounding box confidence and count. The RAViS Framework
and LP methods exhibit the highest CPU usage, averaging
close to 80%, as both rely entirely on onboard processing
and lack the adaptability to reduce computational load during
lighter traffic conditions. The RAViS Framework exhibits the
highest and most erratic CPU usage, attributed to its reliance
on continuous local processing and the absence of an adaptive
mechanism to distribute tasks or reduce computational load
dynamically. Additionally, periodic pauses in processing lead
to noticeable CPU utilization drops. On the other hand, the
Full Offloading (FO) approach achieves the lowest CPU usage,
averaging between 15-20%, by offloading all tasks to the fog
node.

D. Communication Cost

The VD-aware adaptive offloading mechanism demonstrates
the lowest communication cost, effectively balancing offload-
ing decisions by dynamically adapting to vehicle density
as shown in Figure 9. During low-density conditions, the
system operates in Low-CPU Mode, minimizing the need
for communication. In high-density scenarios, the Local Pro-
cessing Mode further reduces communication costs by elim-
inating offloading altogether, while offloading is strategically
utilized in moderate-density conditions to optimize through-
put. In contrast, the Fuzzy-Based Decision approach incurs
slightly higher communication costs compared to the Proposed
Method. This is because its offloading mechanism relies on
confidence scores rather than vehicle density, leading to more
frequent task transmissions to the fog node, regardless of
traffic conditions. The Full Offloading (FO) method exhibits
the highest communication cost, as it continuously sends
all tasks to the fog node, making it heavily dependent on
the network. On the other hand, the RAViS Framework and
Local Processing (LP) approaches incur zero communication

costs, as all processing is performed locally on the UAV.
However, this comes at the expense of higher CPU usage
and limited adaptability to varying traffic conditions. These
findings underscore the efficiency of the VD-aware adaptive
offloading mechanism in managing communication overhead,
making it a more scalable and cost-effective solution compared
to other approaches, particularly in scenarios where network
reliability and resource efficiency are critical.

E. Multiple Experiment Statistics

To evaluate the effectiveness of the proposed VD-aware
adaptive offloading mechanism, we conducted the same ex-
periments multiple times, each run three times to ensure sta-
tistical reliability. The evaluation focused on key performance
metrics, including accuracy, throughput, CPU usage, and com-
munication cost. In UAV-based monitoring, key performance
indicators (KPIs) must be defined to ensure the system meets
real-time operational requirements. In this study, we establish
the following primary KPIs: a target accuracy of > 0.85
to ensure detection reliability, a throughput of > 5 FPS to
maintain real-time responsiveness, CPU usage in the UAV
< 80% to ensure stable operation, and a communication
cost of < 60 ms to minimize unnecessary overhead. For
each approach, the mean and variance of these metrics were
calculated to assess both their central tendencies and variability
under dynamic traffic conditions. Table II reveals that the
VD-aware adaptive offloading mechanism consistently delivers
competitive accuracy, comparable to other methods while
maintaining high throughput. This highlights its adaptability
in managing varying traffic densities without compromising
detection performance.

In terms of resource utilization, the VD-aware adaptive
offloading mechanism showcased efficient CPU usage, ef-
fectively balancing computational demands to avoid over-
burdening the UAV. Unlike approaches that rely heavily on
onboard processing or simplistic offloading strategies, the VD-
aware adaptive offloading mechanism dynamically adapts its
resource usage, demonstrating better scalability and reliability
under diverse conditions. Additionally, the VD-aware adaptive
offloading mechanism achieved lower communication costs
compared to other offloading approaches, reducing the depen-
dency on network reliability. Overall, based on Table II, only
VD-aware adaptive offloading mechanism successfully meets
our defined KPIs.

VI. CONCLUSION

The experimental results show the effectiveness of our
VD-aware adaptive offloading mechanism in achieving bal-
anced performance, resource efficiency, and communication
cost. By dynamically adapting to varying vehicle densities,
the proposed mechanism demonstrated competitive accuracy,
optimized throughput, while efficiently managing resource
usage. Unlike other approaches, such as Fuzzy-Based Deci-
sion, RAViS, and Local Processing (LP), which either lacked
adaptability or overburdened the UAV, our VD-aware adaptive



TABLE II MEAN AND VARIANCE (o) OF METRICS FOR EACH APPROACH

Approach Accuracy (F1 score) Throughput (FPS) CPU Usage (%) Communication Cost (ms)
mean (sd) mean (sd) mean (sd) mean (sd)

VD-Aware Offload 0.88 (0.004) 6.28 (3.902) 41.80 (4.370) 50.87 (49.601)

Fuzzy-Based Decision 0.87 (0.004) 0.57 (0.010) 48.17 (2.320) 56.68 (31.681)

RAViS Framework 0.82 (0.016) 0.92 (0.148) 79.83 (3.517) 00.00 (00.000)

Local Processing 0.89 (0.002) 1.05 (0.018) 80.64 (0.626) 00.00 (00.000)

Full Offloading 0.85 (0.007) 14.10 (1.251) 20.21 (2.421) 64.86 (35.712)

offloading mechanism maintained a stable balance between
computational demands and resource efficiency.

Additionally, While Full Offloading (FO) achieved high
throughput and low UAV resource usage, but it introduced sig-
nificant communication costs due to network dependency. The
VD-aware adaptive offloading mechanism minimized these
costs by selectively offloading task. Our VD-aware adaptive
offloading mechanism presents a comprehensive solution that
is well-suited for dynamic and resource-constrained UAV-
enabled fog computing systems for road traffic monitoring.

Future work will focus on dynamic threshold optimiza-
tion using machine learning to adapt to varying traffic and
environmental conditions. Additionally, Incorporating energy-
aware considerations to improve the system’s sustainability,
particularly in long-duration deployments is also a challenge
addressed in future work.
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