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Abstract—Machine Learning Systems (MLSs) often combine
diverse models to achieve complex objectives but face perfor-
mance degradation due to dataset shifts. Regular performance
monitoring and model retraining are essential to mitigate this
risk. However, model retraining may not always fully restore the
system’s performance, which is known as the imperfect retrain-
ing problem. This study examines model retraining policies to
maintain MLS performance in the face of imperfect retraining.
First, we demonstrate real-world applications that encounter
imperfect retraining in computer vision and natural language
processing tasks. Next, we theoretically analyze two retraining
policies, progressive and conservative, to counteract performance
degradation. We formulate the dynamics of model degradation
and retraining using semi-Markov processes and quantitatively
evaluate service availability and continuity, which measures how
long the service can maintain its performance. The numerical
analysis results demystify the notable trade-off between service
availability and continuity, guiding a proposed retraining strategy
to better sustain MLS performance.

Index Terms—semi-Markov process, dataset shift, machine
learning system, retraining, service availability

I. INTRODUCTION

Machine Learning (ML) has progressed dramatically over
the past two decades, from laboratory curiosity to a practical
technology in widespread commercial use [2]. With the fast
development of both ML algorithms and computing hardware,
ML models have been applied in many application domains
such as medical and commercial ads, performing tasks such
as classification and clustering [4]. Machine Learning System
(MLS) is defined as a system that incorporates different ML
models as its components. Compared to a simple ML model,
MLS provides a divide-and-conquer approach to handling
complex tasks, such as image captioning, search advertising,
and personalized recommendations [5] [6] [7].

Despite its wide applicability, the MLS constantly faces the
threat of dataset shift. Dataset shift occurs when the testing
data undergoes a phenomenon that alters the distribution of
features or the boundary between classes [8]. As a result, the
common assumption that the training and testing data follow
the same distributions is often violated in real-world applica-
tions, leading to performance degradation of the component
model. To restore performance, retraining component models
periodically is necessary [9]. However, some retraining effort
might not benefit the system overall, which is defined as imper-
fect retraining [1]. This poses a threat to the operations of the

MLS. Understanding how to mitigate the impact of imperfect
retraining becomes crucial to maintaining the performance of
MLS. There are very few studies that mention such a risk, and
no systematic solution has ever been proposed [1] [3].

Our study focuses on investigating the impact of the entan-
gled enhancement, a specific type of imperfect retraining, on
an MLS with two components. The entangled enhancement is
the imperfect retraining caused by component entanglement
in the MLS. The impact of entangled enhancement of MLS
has been investigated theoretically using Continuous Time
Markov Chain (CTMC) [1]. Although the study pioneered
the analysis of imperfect retraining, it has several limitations.
First, the phenomenon of imperfect retraining is argued on
the assumptions and lacks real-world examples. Second, the
assumption of CTMC implies that the recovery of the compo-
nent performance following an exponential distribution might
not hold in reality. Thus, the model may not faithfully track
the actual dynamics of the retraining process. Moreover, the
existing study examines the performance of MLS only in
terms of service availability. However, frequent retraining may
harm the continuity due to service interruptions [46]. The
maintenance policies should also be evaluated in light of this
continuity aspect.

To overcome these limitations, we first highlight the real-
world problem of entangled enhancement in computer vision
and natural language processing tasks. In both applications, we
encountered imperfect retraining problems that may degrade
the overall system performance after component model retrain-
ing. Next, we leverage a semi-Markov process (SMP) to model
the dynamics of MLSs confronting dataset shift and imperfect
retraining. Unlike CTMC, the transition times are not restricted
to the exponential distribution. Thus, we can conduct more
comprehensive evaluations of different maintenance policies.
Moreover, we propose a new metric, service continuity, that
quantifies the expected time to maintain the required service
quality without interruptions. Through numerical analysis of
the proposed SMP, we find that a notable trade-off between
availability and continuity is significantly influenced by the
chosen maintenance policies. During the retraining process of
the entangled MLS, depending on the specific use case, the
trade-off relationship can be leveraged by selecting the appro-
priate retraining policies to achieve higher service availability
or continuity in performing the job.
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To sum up, the paper makes the following contributions:
• We showcase the real problem of entangled enhancement

through the experiments of a 3D object detection system
and a sentence classification system.

• We model the dynamics of the MLS with imperfect re-
training under different maintenance policies using SMP.

• We propose a new metric, service continuity, which
enables the evaluation of the stability aspect of the MLS.

• We show the notable trade-off between service availabil-
ity and service continuity, and a strategy guide to choose
the effective maintenance policy.

The rest of this paper is organized as follows. Section II
presents the related work. Section III explains the problem
setting in detail. Section IV showcases the examples of im-
perfect retraining in different scenarios. Section V proposes
the state-space models of the MLS maintenance using SMP.
Section VI shows our findings from the numerical analysis
results. Section VII discusses the strategy to choose retraining
policies. Section VIII explains the limitations of the work.
Finally, Section IX concludes the paper.

II. RELATED WORK

A. Dataset Shift

Dataset shift is the phenomenon in which training and test
data follow distributions that are in some way different [8].
Dataset shifts have posed threats to ML models by negatively
impacting the performance of models trained from past data
when applied to new data [12] [13]. To counter dataset
shift, certain supervision for the model performance, as well
as necessary operational measures, is needed. For example,
several approaches using unsupervised techniques to monitor
data against the dataset shift and retraining the model from
time to time have been proposed [14] [18]. However, the
risk of such an approach causing imperfect retraining in the
MLS was overlooked. Most of the works discussing methods
to counter dataset shift limit the scope of the problem to a
single ML model component without considering the context
of MLS.

B. Operations in Machine Learning System

Despite the rapid advancement of ML in recent years, many
ML proofs of concept have not progressed to production due to
insufficient emphasis on operational techniques [19]. Manual
operation of ML models is challenging due to the complexity
of software and hardware components, necessitating robust
automation [21]. Additionally, models must be retrained on
new data due to dataset shifts, further emphasizing the need
for automation [29]. Machine Learning Operations (MLOps)
has emerged as a developing paradigm in recent years, aiming
to address these needs by ensuring the reliable deployment and
maintenance of models [30]. However, automation in MLSs
faces challenges due to component entanglement. For instance,
performance degradation after an update makes it difficult to
identify the responsible component [31]. Furthermore, self-
defeating improvements, where upstream model enhancements
may not benefit or may even degrade downstream models,

contrast with traditional software systems [3] [32]. Despite
extensive discussion of these issues, existing literature lacks
approaches to mitigate them within the MLOps framework.

C. Availability Analysis of System

Availability is one metric that reflects the dependability of
the system, which is defined as the ability to initiate a service
request when desired [34]. To investigate the service avail-
ability of a specific system, it is common to use a conceptual
model based on a stochastic process for further evaluation.
For example, a continuous-time Markov chain (CTMC) has
been used to model telecommunications switching systems
and computer systems [35] [36]. More flexible approach by
using SMP modeling method with different assumptions on the
state sojourn time has also been applied to different scenarios
such as the software aging problem, reliability of mechanical
manufacturing, as well as power supply availability [37] [38]
[39]. To the best of our knowledge, our work is the first to
apply SMP to model an MLS with model retraining policies.

III. PROBLEM SETTING

Imperfect retraining in an MLS is defined as the retraining
attempt that does not benefit the overall system performance
when countering against the dataset shift [1]. The phenomenon
of imperfect retraining can be attributed to a poor selection
of training samples [8] or overfitting the algorithm [44],
thereby causing the performance deterioration of the com-
ponent, which fails to benefit the system output. In contrast
to these failures in training, rather than considering such a
scenario, we focused on a specific type of imperfect retraining,
namely entangled enhancement. Entangled enhancement refers
to retraining attempts that improve the component model’s
performance, but due to component entanglement, the im-
provement fails to benefit the system’s output.

Let us consider a sequential MLS consisting of two ML
models u and d, where u represents the upstream model and
d represents the downstream model. The upstream model u
processes part of the input, and its output, combined with
another input subset, is passed to the downstream model d to
produce the system’s final output. The system’s performance is
measured using a real-world dataset Xreal against a predefined
metric threshold (e.g., Precision or Recall). Initially, both
models perform well and meet the threshold, ensuring the
system is available, as shown in Figure 1. However, as Xreal

evolves due to dataset shifts, the model’s performance can
degrade.

To counter such an effect, dataset shifts are monitored, and
retraining is triggered when a shift is detected. Each model
uses a fixed algorithm, training data, and hypothesis set during
retraining. Importantly, retraining d does not affect u, and the
system’s availability ultimately depends on whether d meets
the performance threshold.

In our formulated system, which has two ML models as
components, the entangled enhancement is triggered particu-
larly when the upstream model u does not reach the threshold
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Fig. 1: Type 1 and Type 2 component entangled enhancement
in problem setting

due to dataset shift. We classify the dataset shifts into two
types, which are illustrated in Figure 1:

1) Type 1: When the upstream model u does not meet the
threshold due to dataset shift, but the downstream model
d does, a retraining attempt on the upstream model could
potentially degrade the performance of the downstream
model.

2) Type 2: When both the upstream and downstream mod-
els fail to meet their thresholds due to a dataset shift,
a retraining attempt on the upstream model results in
an entangled enhancement, leading to the downstream
model performance still not being recovered.

We presented two experiments in Section IV, demonstrating
that retraining the upstream model, which directly improves
its performance, actually has a detrimental effect on the
downstream model.

IV. EXPERIMENTS ON IMPERFECT RETRAINING

To demonstrate real examples of imperfect retraining, we
conduct two experiments of entangled enhancement in the
tasks of computer vision and natural language processing,
respectively 1

A. Pseudo-Lidar System for 3D Object Detection in Au-
tonomous Driving

In this experiment, we recreated the phenomenon of imper-
fect retraining, specifically component entanglement, in a 3D
object detection system for an autonomous driving scenario,
as also considered in [3]. Fig. 2 shows a widely applied MLS
in the self-driving car setting. The data input is two images
shot from the left and right cameras. The system utilizes a
pseudo-LiDAR [20] as the basis for 3D detection of cars. For
the upstream model u, PSMNet is adopted [15] to predict
the disparity between these two models. The prediction result,
together with the original 2D images, would be processed to
generate 3D point clouds. For the downstream model, Point
R CNN is adopted [16]. The Point R CNN model takes the
3D point clouds as input and generates the car’s location in
3D space as output. The dataset for the experiment comes
from the Kitti Dataset [17]. While the original study in [3]
used APBBOX and AP3D as their chosen metrics, and also

1Code and data are available at our GitHub repository.

conducted experiments on pedestrians, our experiments differ
from the previous study as we limit our scenario to a two-
model system, thus only paying attention to car’s detection
result. Also, we selected AP R40, which uses 40 recall
positions instead of the 11 recall positions proposed in the
original Pascal VOC benchmark [11], thus making this metric
a fairer comparison of the results [22]. We also include bird’s
eye view (BEV ) and average orientation similarity (AOS),
thus incorporating all possible metrics according to the Kitti
Dataset standard to make the result more inclusive.

Fig. 2: The MLS for the experiment regarding computer vision.
The data consists of two images, one taken by the left camera
and the other by the right camera. The upstream model,
PSMNet, uses the images to predict the depth information. The
downstream model Point RCNN utilizes the depth information
provided by the upstream model, along with the x and y
coordinates from 2D images, to predict the car’s location in
3D space.

a) Upstream Model: We trained PSMNet with two train-
ing loss functions: (1) the depth mean absolute error and (2)
the disparity mean absolute error (MAE). Depth is proportional
to the reciprocal of the disparity. We assume that the PSMNet
trained using depth MAE is the original upstream model, and
is denoted as u, and the PSMNet trained using disparity MAE
is the retrained model, and is denoted as u′. After training
these two versions of models using different loss functions,
the MAE of each model for disparity on the validation set is
shown in TABLE I.

It can be observed that, indeed, the upstream model’s
prediction ability increases across the entire range, as the MAE
of the disparity decreases from 1.28 to 1.21. The improvement
effect is dramatic for close-range objects within 10 meters,
in which the MAE of the disparity is reduced from 1.61 to
1.38. However, for objects that are farther from the camera,
such as those within a range of 10 meters to 20 meters, the
disparity estimation result actually has a slightly higher MAE,
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TABLE I: The disparity’s MAE before and after the update

PSMNet
range original model u retrained model u’
0-10m 1.61 1.38
10-20m 1.0 1.01

over 20m 1.42 1.50
Whole range 1.28 1.21

increasing from 1.0 to 1.01. Specifically for objects over 20
meters, the MAE increases from 1.42 to 1.50, indicating a
decrease in estimation accuracy.

b) Downstream Model: By using the estimations from
u and u′, we process two versions of the pseudo-LiDAR
point clouds as inputs to train two versions of the downstream
model, which are both Point R CNNs. Besides the input data,
there is no change in the training algorithm. The result is
shown in TABLE II:

TABLE II: AP R40 of detection result at IoU threshold of 0.7

Point R CNN
metrics original model u retrained model u’

3D 44.75 42.62
BEV 56.02 54.06
AOS 76.44 74.15

BBOX 79.17 76.36

The evaluation metric employed for the downstream model
is AP R40 with an Intersection over Union (IoU) threshold
of 0.7. The common practice of setting the IoU threshold to
0.7 aligns with the Kitti Benchmark and is consistent with
prevailing standards in diverse object detection literature [16]
[20]. In contrast to the traditional AP , which utilizes 11
recall positions as per the original Pascal VOC benchmark,
AP R40 encompasses 40 recall positions, rendering it a
more comprehensive measure for assessing object detection
outcomes [22]. Four distinct metrics, namely AP R403D,
AP R40BEV , AP R40AOS , and AP R40BBOX , are em-
ployed to evaluate various aspects of detection performance,
representing 3D bounding box accuracy, 2D bird’s-eye view
accuracy, average orientation similarity, and 2D bounding box
accuracy, respectively.

Notably, an assessment of the downstream model based on
both AP R403D and AP R40BEV at an IoU threshold of 0.7
reveals that, despite an enhancement in the upstream model’s
performance, the resultant output leads to diminished accuracy
in the downstream model’s ability to detect the location of cars.
Specifically, the downstream model’s performance declines
from 44.75 to 42.62 for AP R403D and from 56.02 to
54.06 for AP R40BEV . Similar deterioration is observed for
AP R40AOS and AP R40BBox, which decrease from 76.44
to 74.15 and from 79.17 to 76.36, respectively.

This decline can be attributed to the upstream model’s
heightened proficiency in estimating disparities for short-
range objects, accompanied by a compromise in its ability to
accurately estimate disparities for objects at greater distances.

Given that cars are typically positioned farther from the cam-
era, they fail to benefit proportionally from the improvement,
resulting in a paradoxical performance degradation.

c) Result Analysis: The experiment replicates the com-
plete process of updating an upstream model. The result con-
firms that the phenomenon of component entanglement indeed
can happen in a two-component MLS when the upstream
model is retrained. In the proposed system, we retrained
the upstream model of disparity estimation and reduced its
disparity MAE on the validation set. However, the downstream
model for detecting cars actually shows a decrease in pre-
cision, thus showcasing the validity of imperfect retraining,
which is also the entangled enhancement in a two-component
MLS.

B. Sentence Classification System for Social Media

In this experiment, we created the phenomenon of compo-
nent entanglement in a sentence classification system for infor-
mation collected from social media. For the upstream model u,
a feature extraction model is adopted to extract the numerical
vector from the sentence. We use BERT and TextCNN as the
different versions of the upstream model before and after the
retraining [23] [24]. The extracted features, concatenated with
the raw features extracted from the sentence using tf-idf, as
well as other statistical features such as the number of nouns
in the sentence, would be used as the input for the downstream
model. For the downstream model d, XGBoost is adopted [25].
XGBoost utilizes the concatenated features to generate the
final classification of the input sentence. It is worth noting that
the upstream feature extraction model is also trained for the
sentence classification task. The reason why upstream model
is not directly used for our final task but is used as feature
extraction model is because of the following reasons: First,
the use of BERT and TextCNN to extract features allows the
fusion with other features such as the vector processed by tf-idf
or word2vec, thus making a better prediction result possible
[26]. Second, the upstream model’s output can be reused
for other downstream tasks, such as hate-speech detection or
general sentiment analysis [27] [28]. We collected 354211
sentences under different sections of topics from a social
media platform, Weibo, as our dataset, in which each sentence
belongs to one of the following classes: Market Monitoring,
Finance Industry, Social Welfare, Education Industry, Food
Security, Public Security, Crime Case, and Medical Health.

a) Upstream Model: We trained BERT and TextCNN by
viewing them as sentence classification models and attached a
softmax function to transform the features into probabilities.
The loss function we used is multi-class cross-entropy. We
assume that the upstream model trained using TextCNN is
denoted as u, and the upstream model trained using BERT
is denoted as u′. After training these two versions of models
for the classification task, the accuracy of each model on the
validation set is shown in TABLE III. It can be observed
that, compared to the TextCNN model, the retrained upstream
BERT model indeed improves overall performance, as the
classification accuracy increases from 0.869 to 0.873.
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TABLE III: The feature extraction quality as a classification
task before and after the update

TextCNN / BERT
Class original model u retrained model u’

Market Monitoring 0.870 0.865
Finance Industry 0.872 0.876
Social Welfare 0.861 0.867

Education Industry 0.884 0.868
Food Security 0.856 0.868

Public Security 0.874 0.899
Crime Case 0.864 0.872

Medical Health 0.876 0.880
All Classes 0.869 0.873

b) Downstream Model: We removed the softmax layer
for classification from the upstream TextCNN model u and
the BERT model u′, and utilized the remaining final layer
as the extracted feature. By concatenating the same features
directly processed from the original data using tf-idf and other
statistical information, such as sentence norms, we processed
two versions of the extracted features from the sentences. We
then use the features to train two versions of the downstream
models, both of which are XGBoost models. Besides the input
data, there is no change in the training algorithm. The result
is shown in Table. IV.

TABLE IV: The accuracy of classification before and after the
update

XGBoost
Class original model u retrained model u’

Market Monitoring 0.876 0.887
Finance Industry 0.917 0.919
Social Welfare 0.908 0.899

Education Industry 0.960 0.968
Food Security 0.899 0.907

Public Security 0.922 0.938
Crime Case 0.917 0.860

Medical Health 0.972 0.971
All Classes 0.924 0.921

It is shown that component entanglement improvement
indeed occurs, as the downstream model using the features
extracted by the original model u of TextCNN has an accuracy
of 0.924, while using the updated model u′ of BERT results in
a decrease in accuracy to 0.921. After retraining, the upstream
model provides extracted features that are supposedly more
effective in a classification task. However, after the feature
fusion and the XGBoost process, the downstream model’s
result deteriorates.

c) Result Analysis: The experiment replicates the com-
plete process of updating an upstream model in a sentence
classification setting. The result again confirms that the phe-
nomenon of component entanglement can indeed occur in a
two-component MLS when the upstream model is retrained.
In the proposed system, we retrained the upstream model of
feature extraction, and its classification accuracy was increased
on the validation set. However, the downstream model for
the actual classification shows a decrease in accuracy, thus

showcasing the threat of entangled enhancement in the context
of the sentence classification task.

V. SYSTEM MAINTENANCE MODELING

A. Motivation

As shown in Section IV, MLS in different application
scenarios faces the threat of entangled enhancement. This
phenomenon occurs when retraining appears to improve the
performance of a component but ultimately worsens the overall
system performance. One of the practical solutions to mitigate
the issue of entangled enhancement is the maintenance policy
that guides every retraining attempt, such as when to retrain
upstream or downstream models. By tailoring retraining poli-
cies to the specific system, it is possible to maximize service
availability [1]. However, different retraining policies affect
not only service availability but also other system aspects as
well. Frequent retraining can improve service availability, but
it may also disrupt service continuity due to interruptions.
A higher availability can be achieved at the cost of service
continuity. Thus, we need to investigate the potential trade-off
between availability and continuity of MLS.

To analyze service availability and continuity under different
maintenance policies, we can resort to state-space modeling
and analysis, as adopted in [1]. However, modeling using
CTMC, which assumes the Markov property throughout the
retraining and failure process, is overly restrictive. It is unlikely
that all the retraining times follow the exponential distribu-
tions. To overcome the limitation, we leverage SMP to model
the state transitions of the MLS. In the following sections,
we first provide the definition of SMP for the two-component
MLS and propose SMP models for two maintenance policies:
progressive retraining and conservative retraining. Progressive
retraining continuously attempts to retrain the model proac-
tively, mitigating the risk of performance degradation due
to dataset shift. Conservative retraining, on the other hand,
attempts model retraining only when the system manager
identifies the degraded performance.

B. Definition

We model the MLS by an SMP {X(t) | t ≥ 0}. In reference
to the performance thresholds, we define the state of the two-
component MLS as a pair (s(u, τu), s(d, τd)) where

s(x, τx) =

{
1, if model x satisfies threshold τx,
0, otherwise.

(1)

We assume that the initial state of the system is (0, 0),
representing that both upstream model u and downstream
model d meet the performance thresholds (i.e., τu and τd,
respectively). Additionally, we denote (0, 0′) and (0, 1′) as
vanishing states, representing that the states (0, 0) and (0, 1)
are altered due to retraining and are about to transition to
another state immediately. We use the kernel function to define
our SMP,

kij(t) = P {Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i} , (2)
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as the conditional probability that, given that the process has
entered state i at time Tn, the next transition occurs at time t
toward state j. We collect all the kij(t) into a matrix, called
the kernel matrix of SMP:

K(t) = [kij(t)]. (3)

We assume that the embedded discrete-time Markov chain
(DTMC) of the SMP satisfies the homogeneity property and
hence it is fully characterized by its one-step transition prob-
ability matrix (TPM) P = [pij ], where pij is the probability
that the next jump of the DTMC is to state j given that the
process is in state i. We define Hi(t) to be the sojourn time
distribution in state i. Specifically,

pij = lim
t→∞

kij(t), P = lim
t→∞

K(t), Hi(t) =
∑
j

kij(t).

(4)

C. Progressive Retraining Model

Fig. 3: A SMP depicting the dynamics of MLS under the
progressive retraining policy. The sojourn time of the transi-
tions caused by dataset shift is set to follow general functions
Fu1(t), Fu2(t), Fd1(t), and Fd2(t). The sojourn time of
the transitions caused by retraining is set to follow some
general distribution function. Gu1(t) denotes the sojourn time
distribution from (0, 1) to (0, 1′). Gu2(t) denotes the sojourn
time distribution from (0, 0) to (0, 0′). Gd1(t) denotes the
sojourn time distribution from (1, 0) to (1, 1). Gd2(t) denotes
the sojourn time distribution from (0, 0) to (0, 1). (0, 1′) and
(0, 0′) are vanishing states with sojourn time of 0. c1 denotes
the coverage factor that once (0, 1′) is entered, it will be
transited to (1, 1). c2 denotes the coverage factor that once
(0, 0′) is entered, it will be transited to (1, 1).

We model the state transitions of a two-component MLS
under the progressive retraining policy by the SMP, as shown
in Figure 3. We denote the the sojourn time of state tran-
sitions caused by dataset shift, which are (1, 1) → (0, 1),
(1, 0) → (0, 0), (1, 1) → (1, 0) and (0, 1) → (0, 0), to
follow some general distribution Fu1(t), Fu2(t), Fd1(t) and

Fd2(t) respectively. We denote the the sojourn time of state
transitions caused by retraining, which are (0, 1) → (0, 1′),
(0, 0) → (0, 0′), (1, 0) → (1, 1) and (0, 0) → (1, 1), to
follow some general distribution Gu1(t), Gu2(t), Gd1(t) and
Gd2(t) respectively. Vanishing states (0, 1′) and (0, 0′) have a
sojourn time of 0. c1 is the coverage factor for type 1 entangled
enhancement. c2 is the coverage factor for type 2 entangled
enhancement.

At state (1,1), no recovery should be observed. Due to
the dataset shift, the system might experience a compromise
in either the upstream model u or the downstream model
d. At state (0,1), the upstream model u fails to reach the
threshold while the downstream model d remains above the
threshold. Therefore, only the successful retraining to the
upstream model u which leads to state (0, 1′) can be observed.
If the retraining is successful, it leads to a transition from state
(0, 1′) to state (1, 1), or it could trigger a Type 1 entangled
enhancement, which transits from state (0, 1′) to state (1, 0).
At state (0, 0), both upstream and downstream models fail to
reach the threshold, and hence go under retraining attempts,
and attempts that change the state of SMP would lead to a
transition to (0, 0′). However, retraining the upstream model
can have two consequences: 1. the upstream model recovers
the performance, while the downstream model fails to recover
the performance τd. This could be caused by either a Type
2 entangled enhancement, or the downstream model only is
improved slightly, which is not enough for the state change.
This would make SMP transits to (1, 0). 2. The retraining is
successful enough that the downstream model also benefits
from the improvement, so that it reaches the threshold τd.
This would make SMP transits to (1, 1). At state (1, 0), only
retraining the downstream model can restore it to (1, 1).

In order to derive the steady-state probability of the SMP,
we need to obtain the steady-state probability vector v of the
embedded DTMC by solving the linear system of equations
v = vP w.r.t veT = 1, where e is the vector with all
entries equal to 1. In SMP, TPM can be deduced by using the
Equation 4, therefore, we can obtain the following P matrix:

P =

(1, 1) (0, 1) (1, 0) (0, 0) (0, 1′) (0, 0′)


0 P1 1− P1 0 0 0
0 0 0 1− P2 P2 0
P3 0 0 1− P3 0 0
0 P4 0 0 0 1− P4

c1 0 1− c1 0 0 0
c2 0 1− c2 0 0 0

,

(5)

P1 =

∫ ∞

0

(1− Fd1(t))dFu1(t),

P2 =

∫ ∞

0

(1− Fd2(t))dGu1(t),

P3 =

∫ ∞

0

(1− Fu2(t))dGd1(t),

P4 =

∫ ∞

0

(1−Gu2(t))dGd2(t).

(6)
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The steady-state probability v of the embedded DTMC can
be derived. Let hi =

∫∞
0

(1 − Hi(t))dt be the mean sojourn
time in state i, then we have:

h(1,1) =

∫ ∞

0

(1− Fu1(t))(1− Fd1(t))dt,

h(0,1) =

∫ ∞

0

(1−Gu1(t))(1− Fd2(t))dt,

h(1,0) =

∫ ∞

0

(1−Gd1(t))(1− Fu2(t))dt,

h(0,0) =

∫ ∞

0

(1−Gu2(t))(1−Gd2(t))dt,

h(0,1′) = h(0,0′) = 0.

(7)

The steady-state probability πi for the SMP is given by

πi =
vihi∑
j vjhj

. (8)

D. Conservative Retraining Model

Fig. 4: A SMP depicting the dynamics of MLS under a con-
servative retraining policy. The sojourn time of the transitions
caused by dataset shift is set to follow general functions
Fu1(t), Fu2(t), Fd1(t), and Fd2(t). The sojourn time of
the transitions caused by retraining is also set to follow
some general distribution function. Gu2(t) denotes the sojourn
time distribution from (0, 0) to (0, 0′). Gd1(t) denotes the
sojourn time distribution from (1, 0) to (1, 1). Gd2(t) denotes
the sojourn time distribution from (0, 0) to (0, 1). (0, 0′) is
a vanishing states with sojourn time of 0. c2 denotes the
possibility that once (0, 0′) is entered, it will be transited to
(1, 1).

The two components MLS under the conservative retraining
policy is modeled by the SMP as shown in Fig. 4. At
states (1,1) and (0,1), no retraining is attempted because the
performance of the downstream model satisfies the threshold.
At State (1,0), the downstream model would be retrained. At
State (0,0), both upstream and downstream models can be
retrained. Compared to the system in Fig. 4, because there

would be no retraining happening in state (0,1), the state (0,1’)
is also absent. The transition from (0,1’) to (1,1) is removed,
which is a potential loss. However, at the same time, the
transition from (0,1’) to (1,0), which is the Type 1 entangle
enhancement that causes the system to fail, is also removed,
which might benefit the system.

Because the embedded DTMC of the SMP satisfies the ho-
mogeneity property, we can obtain the steady-state probability
vector v by P using the formula P = limt→∞ K(t) again,

P =

(1, 1) (0, 1) (1, 0) (0, 0) (0, 0′)


0 P1 1− P1 0 0
0 0 0 1 0
P2 0 0 1− P2 0
0 P3 0 0 1− P3

c2 0 1− c2 0 0

, (9)


P1 =

∫ ∞

0

(1− Fd1(t))dFu1(t),

P2 =

∫ ∞

0

(1− Fu2(t))dGd1(t),

P3 =

∫ ∞

0

(1−Gu2(t))dGd2(t).

(10)

After computing the steady-state probability v, we derive
the mean sojourn time of state i hi:

h(1,1) =

∫ ∞

0

(1− Fu1(t))(1− Fd1(t))dt,

h(0,1) =

∫ ∞

0

(1− Fd2(t))dt,

h(1,0) =

∫ ∞

0

(1−Gd1(t))(1− Fu2(t))dt,

h(0,0) =

∫ ∞

0

(1−Gu2(t))(1−Gd2(t))dt,

h(0,0′) = 0.

(11)

Steady-state probability πi for the SMP state i can be
derived from Equation 8.

E. Metrics Definition
To compare the effectiveness of the system under different

policies, we define service availability and service continuity
as evaluation metrics and provide the formulas for calculating
these metrics.

Specifically, under the policy k, we define Uk as the set
that comprise all the states that are deemed as available states,
Dk as the set that comprise all the states that are deemed as
unavailable states and πi as the steady-state availability of state
i, which can be derived by Equation 8.

The service availability under the policy k is defined as:

Ak =
∏
i∈Uk

πi. (12)

The metric reflects the long-term probability that the system
meets user satisfaction by reaching the threshold when users
utilize the MLS.
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The service continuity is defined as the average duration
between transitions that happen from an available state ((1,1),
(0,1), or (0,1’)) to an unavailable state ((1,0), (0,0), or (0,0’)).
The higher the service continuity, the more stable the system
under that policy is, as it implies a longer duration between
failure events. Formally, service continuity under policy k can
be defined as the inverse of the sum of throughput from the
available state set Uk to the unavailable state set Dk. We define
tpi,j as the throughput from state i to state j. To calculate tpi,j ,
we first derive the expected duration between system entering
state i and system entering state i again, denoted by Wi:

Wi =

∑
k vkhk

vi
. (13)

The derivation of the expected return duration was proved in
Theorem 6.8.1 in [49]. Then the frequency of state i in the long
run is exactly 1

Wi
. By multiplying the transition probability of

the embedded DTMC from state i to state j, we derive the
tpi,j :

tpi,j =
1

Wi
∗ pi,j . (14)

And the service continuity Ck can be mathematically ex-
pressed as:

Ck =
1∑

i∈Uk,j∈Dk
tpi,j

. (15)

VI. NUMERICAL ANALYSIS

A. Research Questions

In this section, we perform numerical analyses on the
proposed SMPs to investigate the effectiveness of retraining
policies in terms of service availability and service continu-
ity. Specifically, the analysis aims to address the following
research questions:

• RQ1: What factors influence service availability and
service continuity under different policies?

• RQ2: How does the shape of the distribution function of
the state transition time impact the analysis results?

• RQ3: How is service availability correlated or in trade-off
relation with service continuity under different policies?

We also present a strategy for selecting the appropriate retrain-
ing policies to meet the requirements of the MLS.

B. Parameter Assignment using Weibull Holding Time

TABLE V: Sojourn Time Distribution

Sojourn time distribution Function or value Transition states
Fu1(t) 1− exp[−(η1t)1] (1, 1) → (0, 1)
Fu2(t) 1− exp[−(η1t)1] (1, 0) → (0, 0)
Fd1(t) 1− exp[−(η2t)1] (1, 1) → (1, 0)
Fd2(t) 1− exp[−(η2t)1] (0, 1) → (0, 0)
Gu1(t) 1− exp[−(η3t)β1 ] (0, 1) → (0, 1′)
Gu2(t) 1− exp[−(η3t)β1 ] (0, 0) → (0, 0′)
Gd1(t) 1− exp[−(η4t)β2 ] (1, 0) → (1, 1)
Gd2(t) 1− exp[−(η5t)β3 ] (0, 0) → (0, 1)

TABLE VI: Parameter Input

Parameter Value Description
η1 0.0125 Scale parameter of Fu1(t), Fu2(t)
η2 0.025 Scale parameter of Fd1(t), Fd2(t)
η3 0.057 Scale parameter of Gu1(t), Gu2(t)
η4 0.112 Scale parameter of Gd1(t)
η5 0.011 Scale parameter of Gd2(t)
β1 2 Shape parameter of Gu1(t), Gu2(t)
β2 3 Shape parameter of Gd1(t)
β3 3 Shape parameter of Gd2(t)
c1 0.75 Coverage factor for type 1 entangled enhancement
c2 0.5 Coverage factor for type 2 entangled enhancement

Table V and Table VI present the input parameter functions
and values used in the analysis. Since SMP allows general
distributions for all the state transition times, we employ the
Weibull distribution as it can describe the transition behavior
with increasing, constant, and decreasing hazard rates. We
use 2-parameter Weibull distributions to model the sojourn
time distribution, which consists of 2 parameters: the scale
parameter η and the shape parameter β. The scale parameter
η locates the position of the probability density function (PDF)
of the distribution on the time axis. As η increases, the entire
distribution shifts to the left, which means that the time to
state transition becomes shorter. For a larger η, recoveries
or failures are expected to happen more quickly. The shape
parameter β determines the shape of the PDF and is closely
related to the hazard rate of the distribution. When β < 1,
the hazard rate is monotonically decreasing, and when β > 1,
the hazard rate is monotonically increasing. As β increases
from 1 to higher values, the peak of the PDF becomes more
pronounced and shifts to the right. This would generally
increase the expected time to state transition, but at the same
time makes such transition more deterministic and predictable,
as the recovery/failure time clusters around a certain period.

The parameter values in Table VI are chosen from the
parameter space satisfying the following conditions:

η1 < η2, (16)∫ ∞

0

exp[−(η4t)
β2 ] d(t) <

∫ ∞

0

exp[−(η3t)
β1 ] d(t), (17)

∫ ∞

0

exp[−(η3t)
β1 ] d(t) <

∫ ∞

0

exp[−(η5t)
β3 ] d(t), (18)

c1 > c2. (19)

For conditions 16 and 17, given the cascading effect of
upstream model recoveries on all downstream models, the
upstream model is presumed to exhibit greater robustness
against dataset shift and consequently undergoes recoveries
less frequently. Therefore, the mean time to failure (MTTF)
and the mean time to recovery (MTTR) of the upstream model
should be larger than those of the downstream model.

For condition 18, the direct update of the downstream model
resulting in a restoration in system performance while the
upstream model still maintains a deteriorated performance is
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TABLE VII: Scaled Sensitivity for Availability and Continuity

Parameter θ SSθ(Ap) SSθ(Ac) SSθ(Cp) SSθ(Cc)
η1 -0.0643 -0.0601 0.00383 0.0601
η2 -0.201 -0.205 -0.700 -0.787
η3 0.0811 0.166 -0.112 -0.166
η4 0.181 0.0956 -0.181 -0.0955
η5 -0.000900 0.00205 -0.00182 -0.00205
β1 -0.000302 0.00168 0.00303 -0.00168
β2 -0.0102 -0.00625 0.0102 0.00625
β3 -0.00125 -0.00286 0.00241 0.00286
c1 0.0413 - 0.169 -
c2 0.0212 0.0253 -0.0212 -0.0253

very unlikely. Therefore, the MTTR of this process is the
largest compared to other recovery processes.

For condition 19, c2 represents the possibility of a more de-
manding condition, requiring the upstream model’s recovery,
which improves the downstream model’s performance metric
from below τd to above τd. In comparison, c1 only represents
the possibility that the upstream model’s recovery does not
negatively affect the downstream model to the point where it
fails to reach the threshold, which is a condition that is more
likely to occur. Therefore, c1 is likely to be larger than c2.

C. RQ1: Sensitivity Analysis

The first two columns in Tables VII show the scaled
sensitivities of different parameters influencing Ap and Ac,
which are the service availability of the system under the
progressive retraining policy and the conservative retraining
policy, respectively. For both Ap and Ac, the three most im-
portant parameters are η2, η4 and η3, which represent the scale
parameters of the Weibull sojourn time of the transactions
due to downstream model dataset shift, downstream model
update and upstream model update. It is obvious that the scale
parameter related to the distribution of the dataset is negatively
related to availability, while the scale parameter related to the
distribution of recovery is positively related to availability.

The last two columns in Table VII show the sensitivities
of various parameters influencing Cp and Cc, which are the
service continuity of the system under progressive retraining
policy and conservative retraining policy, respectively. The
three most important parameters affecting service continuity
are again η2, η3, and η4. An interesting phenomenon is that
most parameters have opposite effects on availability and
continuity. For example, increasing η3 and η4 would increase
the availability at the cost of continuity, regardless of the policy
choice. This finding implies that increasing the frequency of
the model retraining could improve availability but reduce the
continuity.

Findings: Reducing downstream model degradation is
the most effective method to increase both availability
and continuity. Besides, increasing the frequency of
model retraining to gain more service availability has
the potential risk of harming service continuity.

D. RQ2: Comparison to Baseline

In previous studies, only one used CTMC for availability
analysis [1]. The same analysis can be replicated using our
model by setting the shape parameter of the Weibull distri-
bution of the recovery process to 1, making the transition
time exponentially distributed. However, in reality, recovery
times may follow various distributions. To demonstrate the
impact of different distribution assumptions, we vary the shape
parameter of the Weibull distribution while keeping the MTTR
constant. Figure 5 illustrates how the shape parameter affects
service availability.

The figures show that even with a fixed MTTR, increasing
the shape parameter β for the recovery process results in a
decrease in availability. This can be explained by the behavior
of the PDF of the distribution: when β is small, the PDF is
more concentrated on the left, indicating a higher likelihood
of quick recovery. As β increases, the PDF spreads out and
shifts to the right, leading to a more consistent recovery time,
thus possibly reducing service availability.

Furthermore, an interesting trend is observed in Figure 5 (a)
and (c). Initially, the progressive retraining policy shows lower
availability compared to the conservative retraining policy.
However, as the shape parameter increases, the progressive
policy eventually surpasses the conservative policy in terms
of availability.

These observations cannot be captured by CTMC modeling,
where the hazard rate remains constant (with a shape param-
eter equal to 1), as depicted by the two points on each figure.
Therefore, the previous model had a shortcoming in accurately
estimating availability due to the exponential assumption. In
contrast, the proposed SMP can accommodate diverse recovery
time distributions with different shapes, allowing for a more
comprehensive analysis of MLS.

Findings: Despite the same MTTR, the shape of
the PDF for the recovery process would influence
the system availability and even the preference in
policy choice. In this aspect, SMP provides a more
comprehensive analysis than CTMC.

E. RQ3: Trade-off analysis: Availability vs Continuity

In order to analyze the trade-off between availability and
continuity, we further plot service availability against service
continuity under different retraining policies by varying indi-
vidual parameters, as shown in Fig. 6. In Fig. 6 (a), increasing
the scale parameter for downstream model failure reduces both
service availability and service continuity, regardless of the
policy. Figures 6 (b) and (c) illustrate the relationship between
service availability and the scale parameters η3 for upstream
model recovery and η4 for downstream model recovery (when
only the downstream model fails while the upstream model
works). An increase in these parameters enhances service
availability but decreases service continuity. This aligns with
the results in Table VII.
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(a) Shape Parameter for upstream model
update: β1

(b) Shape Parameter for downstream model
update: β2

(c) Shape Parameter for downstream model
update: β3

Fig. 5: Service Availability regarding to different shape parameters

(a) Scale parameter for downstream model
failure: η2

(b) Scale parameter for upstream model
update: η3

(c) Scale parameter for downstream model
update: η4

(d) Shape parameter for downstream model
update: β2

(e) Possibility against entangled
enhancement: c1

(f) Possibility against entangled
enhancement: c2

Fig. 6: Service Availability and service continuity regarding different parameter changes

Further examination of the figures reveals a mostly consis-
tent trend wherein the system operating under the progressive
retraining policy exhibits higher availability compared to the
conservative retraining policy. At the same time, the system
operating under a conservative retraining policy consistently
exhibits a higher continuity in comparison to the system
employing a progressive retraining policy, given the same
parameters. The result implies that, under the progressive
retraining policy, the system, on average, is more available
than the system under the conservative retraining policy.
On the other hand, under the conservative retraining policy,
transitions from an available state to an unavailable state occur
less frequently. Consequently, there is a trade-off between
service availability and service continuity in choosing different
policies. When prioritizing service continuity, the conservative
retraining policy is deemed more favorable. For service avail-
ability, the progressive retraining policy is preferable.

Findings: The maintenance policies can confront the
significant trade-off between service availability and
service continuity. Therefore, choosing one policy typ-
ically enhances one aspect at the expense of the other.

VII. STRATEGY ANALYSIS

The trade-off analysis results can guide the maintenance
of the MLS, which includes a strategy to mitigate imperfect
retraining. We found that in most cases, the MLS faces the
trade-off between service availability and service continuity.
Given a specific use case of the MLS, either service avail-
ability or service continuity may be more vital than the other
metric. For example, ML tasks that prioritize high long-term
average accuracy, while tolerating occasional performance
drops, should focus on service availability rather than service
continuity. Predictive maintenance is one key example of
such a task. It is a continuous process that requires regular
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updates and refinements to adapt to changing equipment and
evolving operational conditions [41]. Industry practices in pre-
dictive maintenance emphasize improving the interpretability
of anomaly detection for unsupervised methods and gener-
ating more labeled data for supervised methods to enhance
long-term accuracy. This approach prioritizes building robust
models that perform well over extended periods, rather than
maintaining stability during specific short-term intervals [40].
Therefore, ML engineers working on predictive maintenance
need a higher service availability. Conversely, some ML tasks
demand high run-time accuracy, where model updates that
could compromise performance should be avoided. In these
scenarios, service continuity is more critical. One example is
ML systems for patient care. While such systems can benefit
from periodic updates using data collected from patients to
improve diagnostic accuracy or support better management
decisions [45], frequent retraining poses risks [43]. In such
cases, service continuity tends to be prioritized to ensure
consistent and reliable real-time performance, safeguarding
patient trust and safety.

To ensure the MLS effectively achieves its goal, it is
crucial to select the right retraining policy. From the trade-
off analysis in Figure 6 (e), we observe that when the
possibility of entangled enhancement becomes very large,
which is represented by the value of c1 approaches to 0 (for
example, c1 = 0.1), the progressive retraining policy should
not be applied as it is inferior to conservative retraining policy
in both service availability and service continuity. On the
other hand, from Figure 6 (c), it can be observed that if
the successful retraining of the downstream model happens
rarely (for example, η4 = 0.06), the conservative retraining
policy should be applied. Based on these observations, the
system engineers may derive a simple strategy as presented in
Figure 7. Although the system parameter values differ in other

Fig. 7: A strategy to select the retraining policy for the MLS

application scenarios, the strategy for choosing the retraining
policy can also be applied in these scenarios.

VIII. LIMITATIONS

In this study, we focused on a simple MLS comprising
two dependent components, where the system’s output is
determined primarily by the downstream model. While this
configuration can effectively capture the essential dynamics
of imperfect retraining caused by component entanglement,
the real-world MLSs may involve more than two compo-
nents. Such configurations could introduce additional layers of
complexity, including interdependencies and cascading effects,
which are not addressed in this work.

This study evaluates the system using service availability
and service continuity. While these metrics provide valuable
insights, additional criteria could be considered in future work.
For instance, retraining operations incur computational costs,
and in a large-scale MLS, multiple modules may require
retraining simultaneously. Ensuring that the retraining units
have sufficient capacity to handle these demands without
disrupting overall system operations could be a critical area
for further investigation.

IX. CONCLUSION

This paper sheds light on an unattended issue of imperfect
retraining in MLS operations. Our experiments in 3D object
detection and sentence classification systems demonstrated the
real problems of entangled enhancement. We use SMP as our
state-space modeling method, allowing a general distribution
to the transition process. We introduced service continuity as
a metric to evaluate the stability of MLS. We demonstrate that
the maintenance policies under entangled enhancement face a
notable trade-off between service availability and continuity, as
revealed through numerical analysis, and introduce a strategy
guide to aid in choosing the optimal maintenance policy.

Future research can explore additional retraining policies,
refine modeling techniques, and apply our findings to a broader
range of application domains. We plan to extend the analysis
to MLS with more components and develop a general model
for MLS containing N components.
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Kontschieder, “Disentangling monocular 3d object detection,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vi-
sion, pp. 1991–1999, 2019.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. 2019.

[24] Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1746–1751, 2014.

[25] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, 2016.

[26] W. Li, S. Gao, H. Zhou, Z. Huang, K. Zhang, and W. Li, “The automatic
text classification method based on bert and feature union,” in 2019
IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS), pp. 774–777, 2019.

[27] A. C. Mazari, N. Boudoukhani, and A. Djeffal, “Bert-based ensemble
learning for multi-aspect hate speech detection,” Cluster Computing, vol.
27, no. 1, pp. 325–339, 2024.

[28] S.-Y. Lin, Y.-C. Kung, and F.-Y. Leu, “Predictive intelligence in harmful
news identification by bert-based ensemble learning model with text
sentiment analysis,” Information Processing & Management, vol. 59,
no. 2, p. 102872, 2022.
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