Energy Bugs in Object Detection Software on
Battery-Powered Devices

Ippo Hiroi
Department of Computer Science
University of Tsukuba
Tsukuba, Japan
hiroi.ippo@sd.cs.tsukuba.ac.jp

Abstract—Object detection software is widely adopted in
edge computing systems such as mobile devices, drones, and
autonomous robots. These edge devices are often battery-powered
and, hence, confront stringent requirements for efficient com-
putation and energy saving. Energy bugs that cause inefficient
software execution pose significant risks to object detection
systems running on battery-powered edge devices. However, such
risks have not been well discussed in the previous research. This
paper aims to investigate potential energy bugs in object detection
software running on a battery-powered device. First, we searched
for reports of known energy bugs from internet forums and bug-
tracking systems for YOLOvS and Mask R-CNN (Mask Region-
based Convolutional Neural Network). Although we did not find
direct mentions of energy bugs, some reports hinted at energy
inefficiencies. Consequently, we conducted experiments to assess
the impact of energy bugs by monitoring resource utilization
and battery consumption of an object detection system running
YOLOVS on a battery-powered Raspberry Pi. Our experimental
results clearly show increased power consumption caused by the
omission of the input image size setting and improper deployment
of the unquantized model, which can be regarded as potential
energy bugs in object detection software.

Index Terms—Object detection, Battery-powered devices, En-
ergy bugs, Energy consumption.

I. INTRODUCTION

In recent years, mobile edge devices, such as Auto-
mated Guided Vehicles (AGVs), Autonomous Mobile Robots
(AMRs), and drones are increasingly used in various fields,
including agriculture, logistics, and disaster response [1] [2].
These mobile edge devices are often powered by batteries.
Given the limited capacity of batteries that can be accommo-
dated on such devices, it is crucial to save as much battery
power as possible and operate them in an energy-efficient
manner [3]. Energy-efficient operation is particularly important
in mission-critical applications, such as disaster rescue, in
which a long and continuous operation is essential with limited
battery resources.

Object detection software is a promising Artificial Intel-
ligence (AI) technology recently introduced in many edge
devices. These algorithm enables real-time identification and
understanding of objects in the real world from the video
input. However, object detection processing is a computation-
intensive task that consumes a large amount of resources and
power, potentially compromising the device’s ability to operate

Fumio Machida
Department of Computer Science
University of Tsukuba
Tsukuba, Japan
machida@cs.tsukuba.ac.jp

Ermeson Andrade
Department of Computing
Federal Rural University of Pernambuco
Recife, Brazil
ermeson.andrade @ufrpe.br

continuously. Inefficient object detection algorithms or their
implementation with improper settings can also lead to un-
necessary power consumption [4]. As a result, wasteful power
usage due to software inefficiencies is expected to become a
more prevalent issue in battery-powered edge devices.

In this paper, we focus on the issue of energy bugs that can
affect the execution of object detection software on battery-
powered devices. Energy bugs are software faults that cause
a larger power consumption during the operation than the
expected power consumption by design. These inefficiencies
arise from improper management of CPU and memory re-
sources, inefficient processing, and unnecessary background
processes. Existing studies of energy bugs mainly target
smartphones, where complex configurations and poor resource
management can lead to faster battery drain [S]. However, the
issue and impact of energy bugs in object detection software
running on edge devices have not been largely discussed in the
previous literature. Energy bugs might be a significant risk
in object detection software used in a battery-powered edge
device.

To address this gap, this study aims to characterize potential
risks of energy bugs in object detection software by two
approaches. First, we investigated the issue reports posted
on internet forums and bug-tracking systems for well-known
object detection software. We searched the bug reports related
to energy issues by keyword search. While we do not find
any reports directly mentioning energy bugs, some reports
implied potential causes of energy bugs in object detection
systems. Therefore, in the next step, we conducted experiments
to reproduce the potential energy bugs in object detection
software on battery-powered edge devices and to characterize
the impact of such bugs by monitoring battery consumption
and resource utilization. The experimental results clearly show
the potential risk of energy bugs that are related to improper
image size settings and the wrong use of unquantized models
on resource-constrained edge devices. We further discuss
the impact of these energy bugs, their causes, and possible
mitigation strategies.

The organization of this paper is as follows. Section II
discusses the background and related work. Section III outlines
our motivation for this study and the approaches adopted
in the investigation. Section IV presents our investigation

into energy bugs in object detection software using internet
forums. Section V details the experimental setup, and Section
VI presents a discussion on the impact, possible causes, and
approaches for addressing energy bugs. Finally, Section VII
offers our conclusions.

II. BACKGROUND AND RELATED WORK

An energy bug is a software defect that causes a program to
consume more power than anticipated due to design flaws, im-
proper API usage, or inefficient interactions between hardware
components [6]. Although the program may run correctly aside
from the excessive power consumption, this issue makes the
bug difficult to detect. Additionally, identifying the root cause
is challenging because the unnecessary power consumption
often results from a combination of complex factors. Based
on the classification by Pathak et al. [6], energy bugs mainly
categorized into four types: hardware-induced bugs, software-
induced bugs, externally triggered bugs, and bugs with un-
known causes.

Hardware
(battery, buttons, etc.)

OS updates
os —_ Configurations
Software

AppS—E No sleep bug

Energy bugs Loop bug

External
(signal strength, external service, etc.)

Unknown

Fig. 1. The common types of energy bugs by Pathak et al. [6]

Many existing studies reported issues with energy bugs in
mobile devices like smartphones. Pathak et al. [6] extracted
reports related to energy bugs from internet forums and
bug tracking systems using keyword searches and clustering
techniques. They developed a classification method for these
bugs, identifying that energy issues in mobile devices can
be attributed to hardware, software, external conditions, or
may remain unexplained. Notably, software bugs accounted
for 35% of the cases, making them the most common. Zhang
et al. [7] also investigated energy bugs in Android through
internet forums, comparing them with those found in iOS and
Windows. Although these studies found actual energy bugs in
mobile devices, the reports did not cover potential energy bugs
in object detection software, which is the focus of this study.

Detecting energy bugs is an important challenge addressed
in several studies. Jiang et al. [5] proposed a static detection
method for energy bugs in Android applications called SAAD
(Static Application Analysis Detection). Using SAAD, they
successfully detected applications with resource leaks and lay-
out flaws with accuracies of 86.67% and 76.27%, respectively.
Kim et al. [8] also presented a static analysis method for
identifying wasteful processes in applications with intensive
graphics operations. By providing feedback to programmers
for corrections, they achieved up to a 44% reduction in energy
usage. These methods are designed for detecting specific types
of energy bugs in mobile devices. In contrast, this study aims

to investigate energy bugs in object detection software, where
the specific causes are not yet well understood.

IIT. MOTIVATION AND APPROACH

While energy bugs in mobile devices are well-known and
thoroughly investigated, the risks associated with energy bugs
in object detection software have not received the same
level of attention. Energy inefficiencies caused by software
bugs in object detection can have significant consequences,
particularly on battery-powered edge devices. For instance, in
a scenario where real-time object detection is used on a drone
for environmental monitoring, energy bugs could reduce flight
endurance and compromise critical missions, such as disaster
rescue operations. This highlights the need to investigate the
potential risks of energy bugs in object detection software.

To better understand energy bugs in object detection soft-
ware, this study explores two research questions.

1) Have energy bugs been reported in well-known object
detection software?

2) How can energy bugs impact the operation of an object
detection system running on a battery-powered device?

To answer the first question, we conducted reviews of online
forums, such as GitHub and Stack Overflow, focusing on well-
known object detection software. A similar methodology was
adopted in the energy bug investigation for mobile devices
[6], [7]. We follow the same approach, targeting the object
detection software instead. As a result, we identified a few
reports about YOLOVS5’s issues that might be caused by energy
bugs. The results are presented in Section IV. To answer
the second question, based on the identified bug reports, we
conducted experiments to characterize the impact of energy
bugs in an object detection system. We consider two energy
bug scenarios. The first scenario reproduces an inefficient
execution caused by the wrong setting for input image size.
The other scenario is related to the improper use of an
unquantized model on the edge device. By analyzing the
decreasing trends of battery consumption, we demonstrate the
significant impacts of those energy bugs in Section V.

IV. INVESTIGATION OF BUG REPORTS

As the first step to investigate potential energy bugs in
object detection software, first we conducted reviews of the
posts on bug-tracking systems and internet forums. In this
study, we choose YOLOvV5 and Mask R-CNN as the target
object detection software. YOLOvVS5 and Mask-R CNN are
popular object detection algorithms for one-stage and two-
stage algorithms employed in many application systems. Since
their source codes are available on GitHub, software bugs
in these software are actively discussed in the developer
forums. From the GitHub and Stack Overflow, we searched
for posts related to energy bugs using keywords, such as
“energy,” “battery,” “power,” “wake,” and “drain,” following
the approach used by [6]. The results for YOLOvS5 and Mask
R-CNN are discussed in the following subsection A and B,
respectively.

A. Bug Reports for YOLOvS

YOLO is a one-stage object detection algorithm that can
perform object detection and classification simultaneously,
making it fast and accurate, which has contributed to its
widespread use [9]. In this study, we selected YOLOVS for
examination due to the numerous issue reports available on
GitHub. Table I presents the results of our keyword searches
in GitHub issue reports and Stack Overflow. Duplicate entries
were excluded from the counts for each keyword.

TABLE I
SEARCH RESULTS FOR YOLOVS5 BUG REPORTS
Total Energy Battery Power Wake Drain
GitHub 8835 3 8 63 1 2
Stack Overflow 495 0 0 3 0 0

After reviewing the reports identified, we filtered potential
energy bugs using the following two criteria adopted by Zhang
et al. [7]:

o The issue describes a potential cause of battery depletion.

o The issue pertains to the application rather than to hard-

ware or the operating system.

After the filtering, we found zero reports satisfying the
above criteria from the Stack Overflow. However, from the
GitHub, we found one report related to the keyword “energy”
and four reports related to the word “power”. The details of
these reports are summarized as follows.

o EdgeTPU HIB error / stability (#8147)': A phe-
nomenon has been reported where the Google Coral Dev
board freezes due to a "HIB error” after performing long
inference tasks using the YOLOv5 model. The cause
of this issue is attributed to some driver IO/heat. As a
countermeasure, it is suggested to either reduce the model
input size or use a smaller model, which is expected to
reduce the device load and lower the frequency of the
eITor occurrence.

+ Running medium or larger model creates an unkill-
able zombie process (#11789)>: When running training
with the train.py script using a medium-sized YOLOVS
model, an issue has been reported where the process does
not terminate even after the training is completed and
continues to consume a significant portion of GPU and
CPU processing power. After training with the default
image size, the number of processes does not change
even when using the kill command. This issue persists
even when attempting to forcibly terminate the process,
leaving server reset as the only solution.

o Data loading and preparation slow and repeated
for each iteration in hyperparameters evolution
(#11367)%: A report indicates that when training a model
with a small dataset, the speed of scanning and caching
is slow, leading to lengthy load times. According to the

Thttps://github.com/ultralytics/yolov5/issues/8147
Zhttps://github.com/ultralytics/yolov5/issues/11789
3https://github.com/ultralytics/yolov5/issues/11367

respondent, one of the possible reasons is that hyperpa-
rameter evolution actually adds augmentation during the
first iteration. As a solution, it is proposed to add the —
noautoanchor and —nosave flags to the command to turn
off augmentation and disable caching. However, it is not
clear whether this solution effectively resolved the issue
in the environment described by the reporter.

o Consistent and efficient preprocessing for classifica-
tion and detection model (#9192)*: This report pointed
out that the new classification model and object detection
model in YOLOVS use different preprocessing methods.
This difference reduces interchangeability between mod-
els and reportedly affects performance, particularly in
low-power environments. This discrepancy can poten-
tially lead to unnecessary energy consumption when used
in embedded applications or on low-power devices. It is
proposed to adopt the same preprocessing used in the
detection model for the classification model to lighten
the preprocessing workload.

o Why using detect.py use more power than PyTorch
Hub? (#9638)°: A report indicates that there is a differ-
ence in power consumption when performing video de-
tection using the regular detect.py script versus PyTorch
Hub. Users measured that using PyTorch Hub is faster and
consumes less power than using detect.py. It is concluded
that this difference is due to detect.py being configured
to save inference results by default, while PyTorch Hub
only saves results on demand.

The last bug report, where using a model without saving
inference results reduced power consumption, is considered
an example of a resolved energy bug. The other four reports
did not explicitly mention power consumption issues, they
are regarded as potential energy bug reports due to their
implications for energy usage.

B. Bug Reports for Mask R-CNN

Mask R-CNN is a two-stage object detection algorithm [10].
This algorithm first identifies regions where objects might be
present, and then performs object detection on each of these
regions. Although slower than single-stage algorithms like
YOLO, Mask R-CNN provides higher accuracy. It is capable
of segmentation and is used in advanced image editing where
high accuracy is required. The results of the keyword search,
for the Stack Overflow and the GitHub are shown in Table II.

TABLE 11
SEARCH RESULTS FOR MASK R-CNN BUG REPORTS
Total Energy Battery Power Wake Drain
GitHub 2726 1 1 8 1 0
Stack Overflow 262 0 0 1 0 0

We filtered the report by the same criteria adopted by Zhang
et al. [7]. However, we found no reports meeting these criteria
either GitHub or Stack Overflow.

“https://github.com/ultralytics/yolov5/issues/9192
Shttps://github.com/ultralytics/yolov5/issues/9638

C. Results from Internet Forum Investigations

Similar to the studies by Pathak et al. [6] and Zhang et
al. [7], the investigation of internet forums and bug tracking
systems related to object detection software identified several
reports that could be regarded energy bugs, although the
reports did not directly mention the causes as energy bugs.
Given the number of identified issues, the risk of energy
bug in object detection software does not seem to be widely
recognized yet. We did not find any reports specifically re-
lated to power consumption in battery-powered edge devices.
However, among the bug reports reviewed, there were more
indications of potential energy bugs in YOLOVS compared to
Mask R-CNN. Consequently, we decided to conduct further
experiments using YOLOVS to explore these potential energy
issues in greater detail.

V. INVESTIGATING ENERGY BUGS BY EXPERIMENTS

We conducted experiments on a battery-powered device
to examine the impact of energy bugs in object detection
software. Inspired by the reports from the internet forum,
we set up two different experimental configurations. The first
configuration aims to replicate the issue of heavy preprocess-
ing for object detection running on a low-powered device
(Issue #9192). We omit the input image size setting, resulting
in increased preprocessing for resizing the input image. The
configuration may cause increased energy consumption due to
unnecessary preprocessing on the edge device. The second
configuration is inspired by the issue of increased power
consumption due to an inappropriate model for the edge device
(Issue #9638). We create a quantization model that is suitable
for execution on the edge device and compare its energy
efficiency with an unquantized model. Using the unquantized
model on the edge device potentially consumes more energy
than the system with a quantized model.

A. Experiment Setup

1) System Configuration: For this experiment, we simulated
natural environment monitoring with a UAV, using a battery-
powered Raspberry Pi for real-time object detection. To recre-
ate a natural environment, we used the AirSim simulator to
create a virtual forest populated with animals. Fig. 2 shows an
image captured within this virtual environment.

Fig. 2. Landscape of the virtual environment

A UAV in the simulator captures real-time video footage
to detect individual animals, such as deer and wolves, in the
forest. The generated videos are streamed using an RTMP
(Real-Time Messaging Protocol) server, while the object de-
tection software runs on the Raspberry Pi. We used YOLOv5
for object detection, which offers a lightweight model suitable
for edge devices with limited computing resources, commonly
used in drone systems [11]. Fig. 3 shows the system used in
the experiments. The system configuration is as follows:

o Edge Device: Raspberry Pi 4B, Quad-core Cortex-A72

(ARMv8) 64-bit SoC 1.5GHz, 4GB RAM;

e OS: Debian GNU/Linux 11;

« Battery: PiSugar 3 Plus, 5000mAbh;

e RTMP server/Video collection equipment: ASUS Vivo-

Mini VC65, Ubuntu 18.04.6 LTS;
¢ Object Detection Software: YOLOvS v7.0.

Fig. 3. The experiment system using a Raspberry Pi powered by a mobile
battery

2) Measurements: We measured the battery consumption
and resource utilization of the Raspberry Pi. Battery consump-
tion data were collected every five minutes using the PiSugar 3
Plus app [12]. Additionally, resource utilization data, including
CPU and memory usage, was collected every five minutes
using the ’sar’ command [13]. Each measurement session
started with the battery fully charged at 100%. Monitoring of
the Raspberry Pi’s resource utilization and power consumption
started at the beginning of the experiment, with YOLOVS
execution starting after 10 minutes.

3) Premeasurement of battery consumption trend: A pre-
liminary measurement test was conducted to assess a common
battery consumption trends without running object detection.
The Raspberry Pi was operated in an idle state with a fully
charged battery, and the battery level was measured until it
depleted to 0%. The results are presented in Fig. 4. The dura-
tion of continuous operation was 432 minutes. The observed
battery level (blue line) generally matched the theoretical value
(dashed green line) BL(t) = 100 — (100¢/432), which is the
expected battery level at time ¢ given that the battery level
reaches to O at a constant rate. The standard deviation of
measurement errors, o, was 2.3%, and the confidence interval,
BL(t) + o, is depicted in the green shaded area in the figure.
The average of the slope of two consecutive points from the
start to the end of the measurement was -0.223 [%/min].

100+ —— Actual Battery Level
---- Predicted Battery Level

Battery Level (%)
-

)
S

=

0 100 200] 300 400
Elapsed time (minutes)

Fig. 4. Typical battery consumption trend of an idle Raspberry Pi

B. Energy bug due to faulty image settings

In YOLOVS, if an image size is not specified, the input im-
age is automatically resized to 640x640 pixels for processing.
For example, if YOLOVS5 version 7.0 receives a video with a
size of 160x160 without setting the image size, the OpenCV
library’s cv2.resize function enlarges the image to 640x640
pixels for processing. When YOLOVS is used in an object
detection system without properly setting the image size, the
resizing of images leads to unnecessary processing, which can
increase the power consumption of the object detection system.

1) Experiments on Energy Bugs due to Image Size Set-
tings: To investigate whether omitting image size settings
can lead to energy bugs in object detection applications, we
conducted experiments comparing battery consumption trends
from the systems with or without image size setting. For this
experiment, we used the pretrained file yolovSs.pt provided
by YOLOVS, which is available from the official YOLOv5S
GitHub repository maintained by Ultralytics. The YOLOv5
program was executed ten minutes after starting measurements
and continued the operation for 130 minutes. We used a
video with an image size of 160x160 pixels. The measurement
results were compared for YOLOvVS executions with image
size settings (With Size Setting) and without the settings
(Without Size Setting). Each configuration was tested in three
trials.

2) Experimental Results: Fig. 5 shows the battery con-
sumption trends for 130 minutes with and without image size
settings. It can be observed that the battery level decreases
rapidly in the Without Size Setting (depicted in orange lines).
The results imply that an omission of size setting causes an
increased amount of preprocessing. The power consumption
trends of Without Size Setting significantly fluctuated, which
were notably larger than the standard deviation of o = 2.3%
reported in the preliminary measurements described in Section
V-A3. The fluctuation is likely due to variations in load and
an unstable power supply. Table III shows the average slope
of battery level between 15 and 130 minutes for all the
trials. The results show that the slope of the battery level of
With Size Setting is significantly smaller than the slope of
Without Size Setting. This indicates that when the image size
is not properly set, more power is consumed. Specifically, the

average battery consumption trend without image size settings
is -0.610 [%/min], compared to -0.532 [%/min] with image
size settings.

Fig. 6 illustrates the time variation of CPU utilization for
Trial 1. We observe that CPU utilization increased sharply
after starting the object detection algorithm and kept the same
usage level during the remaining period. The CPU utilization
of Without Size Setting is consistently larger than that of With
Size Setting. Table IV summarizes the average CPU utilization
during the stable state, excluding outliers. The comparison of
the average CPU utilization further demonstrates that improper
image size settings lead to unnecessary computational process-
ing, resulting in increased power consumption.

100] =ge-

N
=0
90 NEEspsaca
~ SN
N R N o
é/ 80 A “C'~::‘“x\‘
—_— R
g 70 H\;\:‘—.*\\A
Y 60l -—=- 1 With Size Setting e BNy A
— el w L N
Es. --+- 2 With Size Setting e TEY S
50 g . . o & N
g --=- 3 With Size Setting NN ~
- AN
C‘a 40 1_Without Size Setting ‘\:‘u\ o
30 2_Without Size Setting e ‘)\1:\

3_Without Size Setting

N8
(=}

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (minutes)

Fig. 5. Battery consumption trends observed in the systems with and without
image size setting

TABLE III
COMPARISON OF BATTERY LEVEL DEPLETION RATES [%/MIN]

Trial 1 Trial 2 Trial 3 Average
With Size Setting -0.546 -0.507 -0.543 -0.532
Without Size Setting -0.672 -0.554 -0.603 -0.610
70 [0-0-0-0-0-0-0 00 0-09"0-0-9-0-0-0-0-0-0-0-9-9
¥
60 |
é |
o 0 w
%D |
& 40
- 30
)
2+ 20
o 10 ‘ --e- 1 With Size Setting
~~L 1_Without Size Setting

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (minutes)

Fig. 6. CPU utilization over time observed in the systems with and without
image size setting

TABLE IV
AVERAGE CPU UTILIZATION DURING STABLE STATE [%]

Trial 1 Trial 2 Trial 3 Average
With Size Setting 71.0857 71.1491 71.0239 71.09
Without Size Setting ~ 73.8265 73.2335 73.3596 73.47

C. Energy bugs due to inappropriate model use

Edge devices have limited computing resources. To perform
object detection efficiently and minimize power consumption,
it is advisable to use lightweight models. One optimization
method is quantization, which is commonly applied when
deploying neural networks on edge devices [14] [15]. Quan-
tization reduces the model size by converting weights and
activation functions from 32-bit floating-point numbers to
8-bit or 16-bit integers. This approach decreases memory
usage, improves the inference speed, and reduces the en-
ergy consumption. Consequently, using unquantized models
on resource-constrained edge devices can lead to increased
computational load and higher power consumption.

1) Experiments on Energy Bugs due to inappropriate model
use: To investigate if using unquantized models can cause en-
ergy bugs, we conducted experiments to compare resource uti-
lization and power consumption in the systems using quantized
and unquantized models. For this experiment, the YOLOVS
model was converted into a TensorFlow Lite format [16].
TensorFlow Lite is an open-source machine learning library
optimized for mobile and embedded devices. We prepared two
versions of the model: a quantized model (Quantized Model)
and an unquantized model (Unquantized Model). The quan-
tized TensorFlow Lite model uses int8, while the unquantized
model uses float32 from yolov5s.pt. A 640x640 video was
streamed using an RTMP server, and inference was performed
with both models. Resource utilization and power consumption
were collected over a period of 130 minutes. We conducted
three experimental trials for each configuration.

2) Experimental Results: Fig. 7 shows the battery con-
sumption trends for both the quantized and unquantized mod-
els over time. It can be observed that the Unquantized Model
consistently consumes more battery than the Quantized Model.
Table V presents the average slope of two consecutive data
points between 15 and 130 minutes for all models and trials.
The average slope of two consecutive points was smaller for
the Quantized Model than that for the Unquantized Model. The
battery depletion rate was -0.427 [%/min] for the the Quan-
tized Model and -0.568 [%/min] for the Unquantized Model,
both significantly lower than the -0.223 [%/min] observed in
preliminary measurements.

Fig. 8 illustrates the CPU utilization over the 130-minute
period for Trial 1. Similar to the previous experiments for
faulty image setting, the CPU utilization increases sharply
after starting the object detection algorithm and then it remains
stable until the end of the experiment. The CPU utilization of
the Unquantized Model is significantly larger than that of the
Quantized Model, revealing the effectiveness of quantization.

Table VI shows the average CPU utilization during the stable
period. The Unquantized Model can result in excessive power
consumption due to intensive CPU processing.

100 s
90 B
S g
S 80 o,
— XY T
g 70 "-;.3\
[. ‘\Z‘s
N P B 1_Quantized Model A "
b --+- 2 Quantized Model Q\
g 50 - 3_Quantized Model Sy .
A
é‘ 40 1 Unquantized Model R
2 Unquantized Model
30 .
3 Unquantized Model
20

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (minutes)

Fig. 7. Battery consumption trends observed in the systems with unquantized
model and quantized model

TABLE V
COMPARISON OF BATTERY LEVEL DEPLETION RATES [%/MIN]

Trial 1 Trial 2 Trial 3 Average
Quantized Model -0.418 -0.445 -0.418 -0.427
Unquantized Model ~ -0.547 -0.572 -0.584 -0.568

0 -0 -0 00000 0-0-0-90-0-0-0-0-0-0—0—0 909

———

1_Quantized Model
1 Unquantized Model

P
i
|

1
1
1
1
1
1
i
I
]
]
=3

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (minutes)

Fig. 8. CPU utilization over time observed in the systems with unquantized
model and quantized model

TABLE VI
AVERAGE CPU UTILIZATION DURING STABLE STATE[%]

Trial 1 Trial 2 Trial 3 Average
Quantized Model 373535 38.197 37.2126 37.59
Unquantized Model ~ 70.6926 ~ 71.4074 71.4713 71.19

VI. DISCUSSION

This section explores the implications of energy bugs in
object detection systems, particularly those running on battery-
powered devices. We discuss the potential impacts of these
bugs, their causes, and possible mitigation strategies, as well
as the relevance of these issues to other systems and models.

A. Impact of Energy Bugs on Object Detection Systems

This study examined the potential impacts of energy bugs
in object detection algorithms on battery-powered devices.
Several issues can arise from these energy bugs:

o Operational time reduction: Unexpected power con-
sumption caused by energy bugs can significantly reduce
the operational time of battery-powered devices. This
is particularly critical in emergency scenarios, such as
disaster response or rescue operations, where drones and
robots are expected to operate a longer period.

« Battery overload: Excessive power consumption due to
energy bugs increases the load on batteries, accelerating
degradation and potentially causing a failure. This not
only affects the reliability and lifespan of the devices but
also leads to increased economic burdens due to frequent
battery replacements and maintenance.

« Increased operational costs: The need for frequent bat-
tery replacements and maintenance driven by energy bugs
lead to higher operational costs. Furthermore, poor en-
ergy efficiency increases long-term operational expenses,
particularly in large-scale systems, making energy bugs
a significant economic concern.

B. Causes of Energy Bugs in Object Detection systems

In addition to the energy bugs discussed several other
potential causes of energy inefficiency in object detection
systems should be considered:

« Resource leak: If resources such as memory or CPU are
not properly released during the execution of an object
detection task, they may continue to be consumed unnec-
essarily. This can lead to increased energy consumption
and a shorter battery life.

« Wasteful background processes: If the object detection
software runs unnecessary background processes, it can
result in wasted energy. For example, an excessively
large data cache that is not regularly cleared can cause
inefficient use of memory and CPU, increasing power
consumption.

o Unnecessary Data Transfer: Inefficient data transfers
can lead to higher energy consumption. For example,
frequently sending unnecessarily large data sets to the
cloud or other devices can significantly increase power
consumption, particularly in environments with limited
bandwidth or high communication costs, where these
inefficiencies can further exacerbate energy consumption.

C. Mitigation methods

To mitigate the negative effects of energy bugs in object
detection algorithms, several strategies can be employed:

o Offloading: Offloading involves transferring computa-
tional tasks from local devices to the cloud or dedicated
servers, which can reduce energy consumption and extend
battery life [17]. However, it is crucial to balance this
approach with considerations of network latency and
communication costs.

e Algorithm optimization: Optimizing algorithms can
help reduce energy consumption and address energy
bugs [18]. Further energy savings can be achieved by
fine-tuning model parameters to minimize unnecessary
calculations.

e Cache and memory management optimization: Ef-
fective cache and memory management can lower data
access costs and enhance energy efficiency. Implementing
data caching strategies and optimizing memory access
patterns can improve both system performance and en-
ergy efficiency.

D. Energy bugs in other systems

The energy bugs identified in YOLOvS5 may also apply to
other object detection systems and machine learning models.
For example, while YOLOVS is a single-stage object detection
algorithm, multi-stage algorithms like Mask R-CNN and other
tasks such as depth estimation and semantic segmentation
may experience similar energy inefficiencies if not properly
configured and optimized. Although different types of energy
bugs may exist in other models, the mitigation methods
discussed above are generally applicable to these issues.

VII. CONCLUSION

We investigated energy bugs in object detection software for
battery-powered edge devices. Although no explicit mentions
of energy bugs were found in internet forums, several reports
suggested issues that may be equivalent to energy bugs.
Therefore, we conducted experiments to measure resource
utilization and battery consumption of the object detection
systems with two energy bug settings. The experimental
results confirmed that incorrect image size settings and the
use of unsuitable models can lead to unnecessary increases
in power consumption, clearly indicating that energy bugs
can occur in such software. Predicting energy bugs during
program development is challenging, and once deployed, they
are difficult to eliminate. Therefore, developing methods to
detect and avoid energy bugs is essential. Accurate estimation
of battery consumption is also crucial for vital the impact of
energy bugs.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from the
Telecommunications Advancement Foundation.

REFERENCES

[1] F. Greenwood, E. L. Nelson, and P. G. Greenough, “Flying into the
hurricane: A case study of UAV use in damage assessment during the
2017 hurricanes in Texas and Florida,” PLoS ONE, vol. 15, 2020.

[2] A. Rejeb, A. Abdollahi, K. Rejeb, and H. Treiblmaier, “Drones in agri-
culture: A review and bibliometric analysis,” Computers and Electronics
in Agriculture, vol. 198, pp. 107017, 2022.

[3] M. S. Rajabi, P. Beigi, and S. Aghakhani, “Drone Delivery Systems and
Energy Management: A Review and Future Trends,” in Handbook of
Smart Energy Systems, Springer International Publishing, pp. 1273-1291,
2023.

[4] G. Tsoumplekas, V. Li, I. Siniosoglou, V. Argyriou, S. K. Goudos, I. D.
Moscholios, P. Radoglou-Grammatikis, and P. Sarigiannidis, “Evaluating
the Energy Efficiency of Few-Shot Learning for Object Detection in
Industrial Settings,” arXiv preprint arXiv, 2024.

[5] H. Jiang, H. Yang, S. Qin, Z. Su, J. Zhang, and J. Yan, “Detecting energy
bugs in android apps using static analysis,” IEEE International Conference
on Formal Engineering Methods, pp. 192-208, 2017.

[6] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging on
smartphones: a first look at energy bugs in mobile devices,” Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, 2011.

[7]1 J. Zhang, A. Musa, and W. Le, “A comparison of energy bugs for
smartphone platforms,” 1st International Workshop on the Engineering
of Mobile-Enabled Systems, pp. 25-30, 2013.

[8] C. H.P. Kim, D. Kroening, and M. Kwiatkowska, “Static program analy-
sis for identifying energy bugs in graphics-intensive mobile apps,* IEEE
24th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pp. 115-124, 2016.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 779-788, June 2016.

[10] K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask R-CNN,* IEEE
International Conference on Computer Vision, pp. 2980-2988, 2017.
[11] X. Zhu, S. Lyu, X. Wang, and Q. Zhao, “TPH-YOLOvVS5: Improved
YOLOVS Based on Transformer Prediction Head for Object Detection
on Drone-captured Scenarios,” IEEE/CVF International Conference on

Computer Vision Workshops, pp. 2778-2788, 2021.

[12] “PiSugar Power Manager (Software) - PiSugar/PiSugar Wiki”,
https://github.com/PiSugar/PiSugar/wiki/PiSugar-Power-Manager-
(Software), [Accessed: September 1, 2024].

[13] ”sar(1) - Linux manual page”, https://man7.org/linux/man-
pages/manl/sar.1.html, [Accessed: September 1, 2024].

[14] A. V. Demidovskij and E. Smirnov. “Effective post-training quantization
of neural networks for inference on low power neural accelerator,”
International Joint Conference on Neural Networks, pp. 1-7, 2020.

[15] S. K. Macha, O. Oza, A. Escott, F. Caliva, R. M. Armitano, S K.
Cheekatmalla, S. H. K. Parthasarathi, and Y. Liu. “Fixed-point quantiza-
tion aware training for on-device keyword-spotting,” IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 1-5, 2023.

[16] “TensorFlow Lite overview — Google Al Edge — Google Al for De-
velopers”, https://ai.google.dev/edge/lite, [Accessed: September 1, 2024].

[17] E. Andrade and F. Machida. “Assuring Autonomy of UAVs in Mission-
critical Scenarios by Performability Modeling and Analysis, ACM Trans.
Cyber-Phys. Syst., vol. 8, no. 3.

[18] H.-S. Suh, J. Meng, T. Nguyen, V. Kumar, Y. Cao, and J.-S. Seo,
“Algorithm-hardware Co-optimization for Energy-efficient Drone De-
tection on Resource-constrained FPGA,” ACM Trans. Reconfigurable
Technol. Syst., vol. 16, no. 2, pp. 1-25, 2023.

