
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On the Diversity of Machine Learning Models for
System Reliability

Fumio Machida
Department of Computer Science, University of Tsukuba

Tsukuba, Japan
machida@cs.tsukuba.ac.jp

Abstract— The diversity of system components is one of the
important contributing factors of reliable and secure software
systems. In a software fault-tolerant system using diverse
versions of software components, a component failure caused by
defects or malicious attacks can be covered by other versions.
Machine learning systems can also benefit from such a multi-
version approach to improve the system reliability. Nevertheless,
there are few studies addressing this issue. In this paper, we
experimentally analyze how outputs of machine learning
modules can be diversified by using different versions of
machine learning algorithms, neural network architectures and
perturbated input data. The experiments are conducted on
image classification tasks of MNIST data set and Belgian Traffic
Sign data set. Different neural network architectures, support
vector machines and random forests are used for constructing
diverse machine learning models. The diversity is characterized
by the coverage of errors over the test samples. We observe that
the different machine learning models have quite different error
coverages that can be leveraged for system reliability design.
Based on the experimental results, we construct the reliability
model for three-version machine learning architecture with a
diversity measure defined as the intersection of error spaces in
the sample space. From the presented reliability model, we
derive a necessary condition under which three-version
architecture achieves a higher system reliability than a single
machine learning module.

Keywords— Diversity, image classification, machine learning,
reliability, software fault-tolerance

I. INTRODUCTION
Machine learning is becoming an important building block

of many intelligent software systems. A wide variety of
machine learning algorithms are used for extracting the
features of training data set and constructing machine learning
models for the tasks such as regression and classification. In
particular, deep neural networks [1] have been widely adopted
in many practical applications implementing functions like
image classification, voice recognition and machine
translation. Although a machine learning model takes just a
small portion of the whole software system [2], it often
provides the core of intelligence and hence any incorrect
outputs of the machine learning model may cause undesirable
system reliability.

Unlike a software component whose input-output relation
is specified explicitly in advance, the output of a machine
learning model is quite uncertain as it depends on the data and
the algorithm used in the training process. It is extremely
difficult to fully guarantee correct outputs of machine learning
models in a production environment. Therefore, in a design of
a software system employing machine learning models, it is
important to premise the errors in the outputs from the
machine learning modules and take relevant measures to mask
such errors toward improving system reliability.

To design a reliable machine learning systems, in this
paper we investigate the diversity of outputs from different

machine learning modules. The study is motivated from N-
version programming that is a well-established software fault
tolerant technique originally proposed in the nineteen-
seventies [3][4]. The essence of N-version programming is
exploiting diversity of software components by using different
implementations from the same original specification. With
multi-version software implementations, even when one
software component outputs an error due to a defect in the
implementation, another software version which does not
have the same defect can mask the error. Machine learning
system can borrow this idea to improve the reliability of the
system output. Although the output of a machine learning
model for an unknown input is uncertain, the uncertainty can
be a source of diversity that potentially contributes to mask the
errors of the outputs. It is an interesting research question how
machine learning models for the same task can be diversified
by varying machine learning algorithms, choice of hyper-
parameters or configurations, and input data for predictions.
While many studies in machine learning algorithm focus on
maximizing the accuracy by reducing classification or
prediction errors, less work looks into the diversity of error
outputs of different machine learning models.

In this paper, first we experimentally analyze the diversity
of machine learning models in terms of error outputs by using
different algorithms, neural network architectures and varied
input data. In the experiments, we use two data sets, namely
MNIST handwritten digit data set [5] and Belgian Traffic Sign
data set [6]. Both the data sets are available online and widely
used for benchmarking of machine learning algorithms for
image classification tasks. For machine learning algorithms,
we use a support vector machine, random forests and some
different types of neural networks. After constructing the
models for the classification tasks from the same training data
sets, we compare the prediction errors from the different
models using the test data sets. The objective of comparison is
not to find the best classifier, but to understand the difference
of capabilities of individual models. To this end, we compute
the coverage of errors that is defined as the ratio of the test
samples that cannot be accurately classified by a given set of
machine learning models. The coverage of errors increases by
using multiple machine learning models that have different
classification capabilities. For MNIST data sets, we observe
that the coverage of errors reaches 99.34% by using three
different machine learning models, while the standalone best
single classifier’s coverage is 98.91%. We also confirm that
by using different neural network architectures and different
input data sets the coverages reach 99.71% and 99.58%,
respectively. Similar results are obtained for Belgian Traffic
Sign data set as well. We also consider the negative influences
of the diversity on the certainty of predictions. The number of
samples that are accurately predicted by all the machine
learning models decreases by using different prediction results.
The experimental results show that the increased coverage of
errors is gained with the cost of the reduced certainty of
accurate predictions.

2

With the experimental results, next we analytically show
the potential reliability enhancement by employing an N-
version machine learning architecture that uses three different
machine learning modules with majority voting. Intuitively,
the N-version architecture can effectively leverage the
diversity of machine learning models toward an improved
system reliability. However, our analysis on experimental
results does not agree with this expectation. To analyze this,
we construct a reliability model for a three-version machine
learning system with a diversity measure. From this model, we
derive the necessary condition under which the reliability of
the three-version architecture overcomes the reliability of the
best machine learning module. When the condition does not
hold, the majority voting is likely to become a bottleneck for
reliability enhancement, even though the coverage of errors
are increased by the different machine learning models.

Our findings can be summarized as the following guides
for engineering reliable machine learning systems.

1. Outputs of machine learning modules can be diversified
by using perturbated input data (e.g., adding a noise,
shifting pixels etc.) without using multiple machine
learning models. Our experimental results show that the
diversified outputs by perturbated input data can gain the
increased coverage of errors. Since this approach can be
tested with a relatively small cost, it is worth considering
before preparing multiple machine learning models.

2. Diverse versions of machine learning models are primarily
useful for detecting prediction errors in a machine learning
system. We observe that the coverage of errors are
increased by adding different prediction results from
diverse machine learning models in most cases. Although
the certainty of accurate predictions may decrease by
considering different prediction results, the increased
coverage is particularly important for safety critical tasks
such as stop sign recognition in an autonomous vehicle.

3. An N-version architecture with three machine learning
models with a majority voting does not always improve
the system reliability compared with the standalone best
machine learning model. Our reliability model considering
the intersections of error spaces shows the necessary
condition where the three-version architecture can achieve
better reliability than the best machine learning model.

The remainder of the paper is organized as follows.
Section II comprehends the diversity of machine learning
models in terms of system reliability and categorizes the
factors of diversity. Section III shows the results of
experimental study on machine learning algorithms for image
classification tasks. We show how different machine learning
models output errors differently and statistically characterize
the diversity of the models. Section IV provides the analytical
reliability model for a three-version machine learning
architecture and shows the necessary condition for potential
reliability enhancement. Section V discusses related work and
Section VI gives our conclusion.

II. DIVERSITY OF MACHINE LEARNING MODELS
In this section, we introduce the concept of diversity for

reliable software systems using machine learning modules.
One of the techniques to exploit the diversity for improving
the software system reliability is N-version programming that
uses multiple generations of functionally equivalent programs
from the same initial specification [3][4]. Machine learning

systems can also benefit from the diversity of the components
for designing the system reliability. On one hand, similar to
software components, different implementations of machine
learning algorithms can potentially mask the errors caused by
software faults. On the other hand, the behavior of machine
learning modules can also be diversified by machine learning
algorithms, configurations, training data and input data sets.
This paper focuses on the latter case and looks into how we
can diversify the outputs of machine learning modules using
different approaches. The potential contributing factors to
improve the diversity of machine learning modules are
explained below.

A. Training data
Unlike a software component which is implemented from

the initial specification, a machine learning model is
constructed from observed data without any functional
specifications. Both of the amount and the quality of training
data highly impact on the functional behavior of the generated
machine learning model. This means that a subtle difference
of training data set can cause a big difference of the functional
behavior of the machine learning model. We can obtain
different versions of machine learning modules by using
different training data sets for training the models. In practice,
however, all the available data are effectively used for
generating the best machine learning model. Ensemble
learning [24] is a commonly adopted machine learning
technique that uses weak learning algorithms and random
sampling from the training data set. When such a technique is
used in the training process, it can be regarded that the
diversity of training data is already exploited for the purpose
of creating a reliable machine learning module.

B. Machine learning algorithm
Even from the same training data set, the functional

behavior of machine learning models can be diversified
considerably by using different machine learning algorithms.
There are a number of machine learning algorithms available
for tasks such as classification, recognition, regression and
prediction. Individual algorithms have thier own theory and
different characteristics. Although recently deep learning
appears to mostly outperform other algorithms, there is no
theoretical guarantee that deep learning generally achieves the
best performance for any kind of tasks. Even when an
approach achieves the best performance in a specific task,
there is a possibility that other algorithms have different error
coverages as we will see in our experiments in the following
section. Therefore, different machine learning algorithms can
contribute to generate different versions of machine learning
models for the same task.

Two special sub-classes of the diversity factor in machine
learning algorithm are hyper parameters and neural network
architecture as explained below.

1) Hyper parameters
Machine learning algorithms often have parameters to be

tuned for generating more accurate models. These parameters
are called hyper parameters, since they determine the process
of learning algorithm such as the number of iterations, the
threshold to complete the process and the batch size to process
the data. The best combination of the hyper parameter values
which can generate the most accurate model is not known a
priori. Therefore, how to effectively search the best parameter
values is an important research challenge. It should be noted
that however the best model found by a parameter search

3

method is not always the superset of all the other models. Even
when the most accurate model outputs error by a certain input,
any less accurate model may not have the same error by the
same input data. Error coverages of the models generated by
different hyper parameter values can be different. Thus, the
choice of hyper parameter values can also contribute to the
diversity of machine learning models.

2) Architecture of neural networks
A wide variety of neural network architectures have been

presented in particular after the success of deep neural
network. Neural network is a type of machine learning method
that imitates the human brain neural process for learning. A
neural network consists of layers of neurons each of which has
some connections to the adjacent layers’ neurons with some
weights. An architecture of neural network represents the
connections of neurons as well as the numbers and the types
of layers. Similar to hyper parameters, the best architecture for
a specific problem is not known a priori, and hence
architectural search techniques are actively investigated [7][8].
Since the error outputs of neural networks constructed from
different architectures can be different, the choice of
architecture is also considered as a contributing factor of the
diversity. We will experimentally examine this in Section III.

C. Input data for prediction
Training data set and machine learning algorithm are the

key sources of machine learning models. The output of
obtained model, however, is quite sensitive to the input data
for prediction as well. It is known that a subtle perturbation of
input data can easily confuse a machine learning model to
output error. Recently such a problem is referred to as
adversarial example [9] and actively investigated in the
research community [10][11][12]. For example, just one pixel
change over the image of red traffic light on the road can cause
mis-classification as green right with over 90% confidence
[13]. Since the input data around the border of classes may
have such characteristics, opposite can also happen. It means
that just a subtle perturbation of input data can flip an error
case to a correct output. Machine learning modules receiving
different input data from the same source can have different
error coverages due to their sensitivities to input data. We can
diversify the output of machine learning modules by varying
input data in the operation. It should be noted that our goal is
to improve system reliability in operation instead of training
the best machine learning model. Diversifying the input data
is particularly effective when we only have a best trained
machine learning model and no means to add another model
for the same task. The approach can also be employed after
deployment of the model on the target system because we can
simply insert a data preprocessing stage before the process of
machine learning model to perturbate the outputs. The impact
of input data diversity is experimentally examined in the next
section.

III. EXPERIMENTAL STUDY
In this section, we experimentally show the diversity of

machine learning models for image classification tasks that
will potentially increase the classification error coverage. Our
experiments are based on comparative evaluations of various
machine learning models with different configurations and
varied input data. The main objective of comparative
evaluation is not on the benchmark of different machine
learning models, but on characterizing the difference of error
spaces of input data by various machine learning models. To

quantitatively understand the diversity of machine learning
models, we evaluate the coverage of errors over the test
samples, which is formally defined in Section III-A.

The experiments are conducted on the image classification
tasks for MNIST handwritten digit data set [5] and Belgian
Traffic Sign data set [6]. MNIST data set is a well-known
image classification benchmark that is composed of 28*28
pixels images for digits. 60000 examples are contained in the
training data set and 10000 examples are included in the
testing data set. On the other hand, Belgian Traffic Sign data
set is a real world traffic sign image data set that can be
divided into 62 different types of signs. 4591 examples are
available as the training data set and additional 2534 examples
are provided as the testing data set. Since the original images
of Belgian Traffic Sign data are formatted in different sizes,
we normalized the image data in 32*32 pixels. For machine
learning algorithms, we employ random forests [14], support
vector machine [15] and artificial neural networks [16].
Random forests use a random sampling of training data and
generate multiple decision trees. For classification tasks, a
majority voting of decision trees is taken. Compared to other
state-of-art algorithms, both of the training and inference runs
very fast. Support vector machine is a supervised machine
learning algorithm exploring a hyperplane that has the largest
distance to the nearest training-data point of any class. Since
the obtained hyperplane has high generalization capability, the
accuracy of classification is generally good. Artificial neural
network is a computational model inspired by the neural
structure of animal’s brain. In this paper, we particularly use
convolutional neural network (CNN) and multilayer
perceptron that can be trained by a back-propagation
algorithm. Due to the good classification performance, neural
networks are now widely used for image classification, voice
recognition and machine translation applications.

A. Diversity affected metrics
To investigate the diversity of machine learning models,

we characterize the subset of sample space for individual
machine learning models that can cause classification errors.
We refer to this subset as error space of a machine learning
model. Individual machine learning models may have
different error spaces. Thereby, the classification error by a
machine learning model can be masked if another machine
learning model can classify the same sample correctly. To
quantify the increased error masking capability by diverse
machine learning models, we introduce the coverage of errors
as defined below.

Definition: Coverage of errors
Given a set of machine learning models ℳ = {𝑚𝑚1,𝑚𝑚2, … },
let 𝐸𝐸𝑖𝑖 be the observed error space of a machine learning
model 𝑚𝑚𝑖𝑖 for the test samples 𝑆𝑆. The coverage of errors is
defined as

Cov(ℳ) = 1 −
�⋂ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈ℳ �

|𝑆𝑆| .

The coverage values reach one when any test sample can be
classified correctly at least by a machine learning model. Note
that the coverage of errors for a single machine learning model
is equal to the accuracy of the model over the test examples.
The coverage value can be increased by adding other machine
learning models that have different error spaces.

The diversity of machine learning models also influences
on the uncertainty of prediction results. Even when a machine

4

learning model predicts the label correctly, the result can
become uncertain if another prediction result from different
machine learning model does not agree on the correct label.
By adding prediction results from diverse machine learning
models, the number of samples that are correctly predicted by
all the models decreases. Since this negative impact of
diversity also needs to be analyzed, we introduce the certainty
of accurate prediction which is defined as below.

Definition: Certainty of accurate prediction
Given a set of machine learning models ℳ = {𝑚𝑚1,𝑚𝑚2, … },
let 𝐸𝐸𝑖𝑖 be the observed error space of a machine learning
model 𝑚𝑚𝑖𝑖 for the test samples 𝑆𝑆. The certainty of accurate
prediction is defined as

Cer(ℳ) = 1 −
�⋃ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈ℳ �

|𝑆𝑆| .

The certainty of accurate prediction represents the ratio of test
samples whose labels are correctly predicted by all the
machine learning models in ℳ . The certainty of accurate
prediction for a single machine learning model is equal to the
accuracy of the model. The certainty value decreases by
adding different outputs from machine learning models that
has different error spaces.

B. Algorithm diversity
First, we evaluate the diversity of machine learning

models generated from three machine learning algorithms
using MNIST data set. We use scikit-learn [17] for the
implementation of random forest (RF) and support vector
machine (SVM). The parameters of random forest are chosen
by a grid search method that selects the best performed
parameter value set. For SVM, we use support vector classifier
and set the parameter gamma and C to 0.001 and 100,
respectively. While each pixel of original image data ranges
from 0 to 255 which represents the grayscale, we use digitized
values for training and testing the support vector classifier. For
artificial neural network, we use Keras [18] implementation of
CNN and configure the network with a convolutional layer, a
max pooling layer and a fully-connected layer as shown in
Figure 1, which we follow the network visualization by Keras.
Categorical cross entropy is used for loss function and Adam
is used for optimizer. In the training of the CNN, the batch size
is set to 128 and the final model is obtained after ten epochs.
After building three models with 60000 of training samples,
we predict the labels of testing data set and compare the
predicted labels with correct labels.

Figure 1. CNN architecture used in the experiments

TABLE I shows the number of classification errors of
individual digits by three algorithms. We denote |𝐸𝐸X| as the
number of errors by the model X that is either CNN, RF or
SVM. As can be seen, while the number of samples differs
among the digits (varying from 892 to 1135), CNN achieves
the smallest classification errors for all the digits. This result
only, CNN is considered as the best classifier among three
models in terms of the label prediction accuracy. Then, our
next question is how the coverage of errors can be improved
by adding the prediction results from the different models.
TABLE II shows the improved error coverages by combining
CNN with RF, SVM and both. For all the digits, the coverages
of errors are improved by adding the prediction results of other
models. This means that even when CNN incorrectly predicts
the labels for some test samples, the other models can predict
the labels correctly. The error coverage is maximized when
three models are used together (See the values of the line
Cov(CNN, RF, SVC)). The total error coverage reaches 0.9934,
whereas the best coverage achieved by CNN is 0.9891. The
result clearly shows that the different models have different
error spaces that can potentially enhance the error masking
capability. Meanwhile, diverse machine learning models also
cause the increase in the total error space. In TABLE II, the
decreased certainties of accurate predictions are summarized
as well. When we use the prediction results from three models,
the certainty of correct prediction for total samples decreases
down to 0.9561, whereas the original accuracy of CNN is
0.9891. This means that about 4.4% of test samples there are
disagreement among the prediction results from the different
models.

Input layer Output shape (28, 28, 1)

Convolutional layer Output shape (24, 24, 32)

Max pooling layer Output shape (12, 12, 32)

Dropout layer Output shape (12, 12, 32)

Flatten layer Output shape (4608)

Fully-connected layer Output shape (128)

Softmax layer Output shape (10)

TABLE I. NUMBER OF CLASSIFICATION ERRORS BY DIFFERENT MACHINE LEARNING MODELS

Label 0 1 2 3 4 5 6 7 8 9 Total
|𝑆𝑆| 980 1135 1032 1010 982 892 958 1028 974 1009 10000

|𝐸𝐸CNN| 3 6 11 3 5 9 22 11 11 28 109
|𝐸𝐸RF| 10 13 36 34 26 30 19 37 41 47 293

|𝐸𝐸SVM| 11 12 26 27 32 42 25 39 40 42 296

TABLE II. ERROR COVERAGES AND CERTAINTY OF PREDICTIONS BY ADDING PREDICTION RESULTS FROM DIFFERENT MACHINE LEARNING MODELS

Label 0 1 2 3 4 5 6 7 8 9 Total
Cov(CNN) 0.9969 0.9947 0.9893 0.9970 0.9949 0.9899 0.9770 0.9893 0.9887 0.9722 0.9891

Cov(CNN, RF) 0.9980 0.9965 0.9903 0.9980 0.9949 0.9922 0.9854 0.9912 0.9908 0.9802 0.9918
Cov(CNN, SVC) 0.9980 0.9965 0.9942 0.9980 0.9969 0.9944 0.9843 0.9912 0.9928 0.9802 0.9927

Cov(CNN, RF, SVC) 0.9980 0.9974 0.9942 0.9980 0.9969 0.9944 0.9864 0.9932 0.9928 0.9822 0.9934
Cer(CNN, RF) 0.9888 0.9868 0.9641 0.9653 0.9735 0.9641 0.9718 0.9621 0.9559 0.9455 0.9680

Cer(CNN, SVC) 0.9878 0.9877 0.9700 0.9723 0.9654 0.9484 0.9666 0.9601 0.9548 0.9504 0.9668
Cer(CNN, RF, SVC) 0.9847 0.9833 0.9525 0.9525 0.9582 0.9395 0.9614 0.9465 0.9343 0.9435 0.9561

5

For the classification of the images labeled “0”, we
visualize the difference and overlaps of error spaces of three
models in Figure 2. Only two out of 980 samples cannot be
accurately classified by any models (i.e., |𝐸𝐸CNN ∩ 𝐸𝐸RF ∩
𝐸𝐸SVC| = 2). Except for the depicted fifteen samples (in
𝐸𝐸CNN ∪ 𝐸𝐸RF ∪ 𝐸𝐸SVC), three models agree with the correct label
prediction.

Figure 2. Error spaces of three machine learning models for classification

of test samples labeled “0”

C. Architectural diversity
Next, we focus on neural network and use different

architectures to test whether the error of coverages can be
improved by varying network architectures. In addition to the
CNN used in the previous section, we introduce two different
architectures of neural networks as shown in Figure 3 in the
visualization format by Keras. Dense network consists of two
fully-connected layers and it does not have any convolutional
layers. Expand network extends the original CNN with
another convolutional layer, a max pooling layer and a fully
connected layer. These neural networks are trained in the same
configurations used for the original CNN.

TABLE III shows the number of classification errors
observed for the same test samples by three neural networks.
Both of CNN and Expand network achieve good classification
accuracy. Nevertheless, there are still some prediction errors
to be corrected. We investigate the coverage of errors by
combining the prediction results of three neural network
architectures. The coverage of errors is summarized in
TABLE IV. The results clearly show that the coverages of
errors are improved for all the labels by adding the prediction
results with the different neural network architectures. The
total error coverage reaches 0.9971 by using three
architectures. For the classification of the test samples labeled

“0”, only one example remains uncovered by the predictions
by three networks (i.e., �𝐸𝐸CNN ∩ 𝐸𝐸Dense ∩ 𝐸𝐸Expand� = 1).

Figure 3. Architecture of dense network and expand network

 Figure 4 shows the overlaps of error spaces of three neural
networks for the test samples labeled “0”. Since 𝐸𝐸Dense is a
superset of 𝐸𝐸CNN and 𝐸𝐸Expand , Dense network does not
improve the coverage of errors against CNN and Expand. On
the other hand, since 𝐸𝐸Expand contains a sample which is not
in 𝐸𝐸CNN , Expand network improves the coverage of errors
against CNN.

Figure 4. Error spaces of three neural networks for classification of test

samples labeled “0”

TABLE IV also shows the decreased certainties of
accurate predictions. By adding the prediction results from the
different neural networks, the union of error spaces enlarge
that causes decreased certainties. When we use three neural
networks, the certainty is reduced to 0.9766, which is not so
significant as the case of three different algorithms observed

𝐸𝐸CNN

𝐸𝐸RF
𝐸𝐸SVC

Input layer Output shape (512)

Fully-connected layer Output shape (512)

Dropout layer Output shape (512)

Fully-connected layer Output shape (512)

Dropout layer Output shape (512)

Softmax layer Output shape (10)

Input layer Output shape (28, 28, 1)

Convolutional layer Output shape (24, 24, 30)

Max pooling layer Output shape (12, 12, 30)

Dropout layer Output shape (5, 5, 15)

Flatten layer Output shape (375)

Fully-connected layer Output shape (50)

Softmax layer Output shape (10)

Convolutional layer Output shape (10, 10, 15)

Max pooling layer Output shape (5, 5, 15)

Fully-connected layer Output shape (128)

Dense network Expand network

𝐸𝐸CNN
𝐸𝐸Dense

𝐸𝐸Expand

TABLE III. NUMBER OF CLASSIFICATION ERRORS BY DIFFERENT NEURAL NETWORKS

Label 0 1 2 3 4 5 6 7 8 9 Total
|𝐸𝐸CNN| 3 6 11 3 5 9 22 11 11 28 109

|𝐸𝐸Dense| 9 6 12 13 21 19 11 19 22 23 155
�𝐸𝐸Expand� 2 9 4 8 12 9 16 11 7 11 89

TABLE IV. ERROR COVERAGES AND CERTAINTY OF PREDICTIONS BY ADDING PREDICTION RESULTS FROM DIFFERENT NEURAL NETWORKS

Label 0 1 2 3 4 5 6 7 8 9 Total
Cov(CNN) 0.9969 0.9947 0.9893 0.9970 0.9949 0.9899 0.9770 0.9893 0.9887 0.9722 0.9891

Cov(CNN, Dense) 0.9969 0.9974 0.9952 0.9980 0.9969 0.9933 0.9906 0.9922 0.9938 0.9891 0.9944
Cov(CNN, Expand) 0.9990 0.9974 0.9971 0.9980 0.9959 0.9933 0.9875 0.9942 0.9949 0.9960 0.9954

Cov(CNN, Dense, Expand) 0.9990 0.9982 0.9981 0.9990 0.9969 0.9955 0.9937 0.9951 0.9969 0.9980 0.9971
Cer(CNN, Dense) 0.9908 0.9921 0.9826 0.9861 0.9766 0.9753 0.9749 0.9786 0.9723 0.9604 0.9792

Cer(CNN, Expand) 0.9959 0.9894 0.9884 0.9911 0.9868 0.9865 0.9729 0.9844 0.9867 0.9653 0.9848
Cer(CNN, Dense, Expand) 0.9908 0.9877 0.9816 0.9842 0.9715 0.9720 0.9708 0.9767 0.9702 0.9584 0.9766

6

in TABLE II. Since three neural networks achieve good
prediction accuracy alone, the combination of them does not
reduce the certainty of accurate prediction so much.

D. Input data diversity
As discussed in Section II-C, the output of machine

learning modules can also be diversified by varying input data.
We examine the input data diversity by perturbating the test
sample data and compare the predictions results with the same
machine learning model. For data perturbation, we apply three
different operations that are shift, rotate, and adding noise.
Shift operation moves the digit to left by two pixels. Rotate
operation rotates the digit by twenty degrees in the clockwise
direction. Adding noise uses Gaussian-distributed additive
noise with 0.01 of variance. Figure 5 shows the generated
samples by these operations from the same sample digit.

Figure 5. Samples generated by shift, rotate and noise adding operations

For the generated samples, machine learning models are
required to predict the correct labels as for the original data.
We use the same CNN model to predict the labels of the
generated data. TABLE V shows the number of classification
errors of individual digits by the original and three different
types of generated data sets. We denote �𝐸𝐸CNN,Y� as the
number of prediction errors for the original data (Y=o), shifted
data (Y=s), rotated data (Y=r) or noise added data (Y=n).

The classification errors increase in most cases by using
perturbated data compared with the classification errors
observed by the original data. Interestingly, however, there
are some cases that the errors are reduced by adding gaussian
noise (i.e., for label 5 and 8). Although the numbers of errors

are increased in the cases with shifted samples and rotated
samples, their prediction results may contribute to improve
the coverage of errors. To analyze this by quantifying the
coverage or errors, we introduce a variant of the coverage of
errors as defined below.

Cov(𝑚𝑚,𝒟𝒟) = 1 −
�⋂ 𝐸𝐸𝑚𝑚,𝑗𝑗𝐷𝐷𝑗𝑗∈𝒟𝒟 �

|𝑆𝑆| ,

where 𝒟𝒟 = {𝐷𝐷1,𝐷𝐷2, … } is the set of data set from the same
original data set, 𝐸𝐸𝑚𝑚,𝑗𝑗 is the error space of the machine
learning model m for the data set 𝐷𝐷𝑗𝑗 . Since we use CNN in this
experiment, m=CNN. Similarly, a variant of certainty of
accurate predictions is defined as

Cer(𝑚𝑚,𝒟𝒟) = 1 −
�⋃ 𝐸𝐸𝑚𝑚,𝑗𝑗𝐷𝐷𝑗𝑗∈𝒟𝒟 �

|𝑆𝑆| .

We computed these statistics as shown in TABLE VI.

 As we can see, the coverage of errors is improved by
adding the prediction results with the perturbated data
regardless of the operations used. The total coverage of errors
reaches 0.9957 by using different prediction results from four
different data sets. Note that we use the same machine learning
model generated from the same training data set, but just vary
the input data for prediction by subtle modifications. Despite
such a simple treatment which exploiting input data diversity,
surprisingly we can achieve the complete error coverage for
label 0 and 3 (See the line of Cov(CNN, {o, s, r, n})). This does
not directly lead to the improved reliability of the machine
learning system, since it depends on the way to select the
correct result from multiple prediction results. The complete
coverage of errors just guarantees that at least one correct
prediction results exist in the candidates. We can wisely use
this capability of error coverage in an architecture design.

For the certainty of accurate predictions, the values are
decreased by adding the prediction results in all the cases with
shifted and rotated data. When four prediction results are
combined, the certainty decreases down to 0.9027 that is much
worse than the previous cases. However, with the noise added
data there are cases that the certainty of accurate predictions
does not decrease (for label 3 and 8) from the accuracy of
prediction by CNN with original data which is equal to
Cov(CNN, {o}). This indicates that the certainty of accurate
predictions do not always decrease even though the coverage
of errors increases by noise adding.

TABLE V. NUMBER OF CLASSIFICATION ERRORS BY CNN WITH PERTURBATED TEST DATA

Label 0 1 2 3 4 5 6 7 8 9 Total
�𝐸𝐸CNN,o� 3 6 11 3 5 9 22 11 11 28 109
�𝐸𝐸CNN,s� 35 85 58 18 20 21 52 18 32 54 393
�𝐸𝐸CNN,r� 5 47 70 19 105 24 104 147 57 113 691
�𝐸𝐸CNN,n� 8 8 11 3 6 8 29 17 9 29 128

TABLE VI. ERROR COVERAGES AND CERTAINTY OF PREDICTIONS BY ADDING PREDICTION RESULTS WITH PERTURBATED TEST DATA

Label 0 1 2 3 4 5 6 7 8 9 Total
Cov(CNN, {o}) 0.9969 0.9947 0.9893 0.9970 0.9949 0.9899 0.9770 0.9893 0.9887 0.9722 0.9891

Cov(CNN, {o, s}) 0.9980 0.9956 0.9932 0.9980 0.9969 0.9933 0.9823 0.9942 0.9918 0.9861 0.9930
Cov(CNN, {o, r}) 0.9990 0.9974 0.9922 1.0000 0.9949 0.9944 0.9802 0.9932 0.9938 0.9782 0.9924
Cov(CNN, {o, n}) 0.9980 0.9974 0.9922 0.9970 0.9969 0.9910 0.9781 0.9893 0.9918 0.9742 0.9907

Cov(CNN, {o, s, r, n}) 1.0000 0.9991 0.9981 1.0000 0.9980 0.9955 0.9843 0.9961 0.9959 0.9891 0.9957
Cer(CNN, {o, s}) 0.9633 0.9242 0.9399 0.9812 0.9776 0.9731 0.9405 0.9776 0.9641 0.9326 0.9568
Cer(CNN, {o, r}) 0.9929 0.9559 0.9293 0.9782 0.8931 0.9686 0.8883 0.8531 0.9363 0.8821 0.9276
Cer(CNN, {o, n}) 0.9908 0.9903 0.9864 0.9970 0.9919 0.9899 0.9687 0.9835 0.9877 0.9693 0.9856

Cer(CNN, {o, s, r, n}) 0.9551 0.8934 0.8934 0.9644 0.8829 0.9552 0.8747 0.8463 0.9158 0.8543 0.9027

7

E. Classification of traffic sign images
Next, we use Belgian Traffic Sign data set for conducting

similar experiments to analyze the coverage of errors and the
certainty of accurate prediction. Since the data set contains 62
different signs for the classification, we only show the
prediction results for three specific classes (“Stop”, “No entry”
and “No stop”) and the total error coverages. TABLE VII,
VIII and IX, respectively show the results of label predictions
by different algorithms, neural network architectures and
perturbated data sets with CNN. For machine learning
algorithms, neural network architectures, and data
perturbation operations, we apply the same methods as used
for MNIST task except for the changes of input data size.

TABLE VII. ERROR COVERAGES AND CERTAINTIES OF PREDICTIONS OF
TRAFFIC SIGN IMAGES BY DIFFERENT MACHINE LEARNING MODELS

Label Stop No entry No stop Total
|𝑆𝑆| 45 61 11 2520

|𝐸𝐸CNN| 3 0 1 130
|𝐸𝐸RF| 11 0 3 373

|𝐸𝐸SVM| 9 0 0 294
Cov(CNN) 0.9333 1.0000 0.9091 0.9484

Cov(CNN, RF) 0.9333 1.0000 1.0000 0.9548
Cov(CNN, SVC) 0.9778 1.0000 1.0000 0.9631

Cov(CNN, RF, SVC) 0.9778 1.0000 1.0000 0.9659
Cer(CNN, RF) 0.7556 1.0000 0.6364 0.8456

Cer(CNN, SVC) 0.7556 1.0000 0.9091 0.8687
Cer(CNN, RF, SVC) 0.6444 1.0000 0.6364 0.8091

TABLE VIII. ERROR COVERAGES AND CERTAINTIES OF PREDICTIONS OF

TRAFFIC SIGN IMAGES BY DIFFERENT NEURAL NETWORKS
Label Stop No entry No stop Total
|𝐸𝐸CNN| 3 0 1 130

|𝐸𝐸Dense| 0 0 0 247
�𝐸𝐸Expand� 4 0 0 157

Cov(CNN) 0.9333 1.0000 0.9091 0.9484
Cov(CNN, Dense) 1.0000 1.0000 1.0000 0.9579

Cov(CNN, Expand) 0.9556 1.0000 1.0000 0.9619
Cov(CNN, Dense, Expand) 1.0000 1.0000 1.0000 0.9746

Cer(CNN, Dense) 0.9333 1.0000 0.9091 0.8925
Cer(CNN, Expand) 0.8889 1.0000 0.9091 0.9159

Cer(CNN, Dense, Expand) 0.8889 1.0000 0.9091 0.8726

TABLE IX. ERROR COVERAGES AND CERTAINTIES OF PREDICTIONS OF
TRAFFIC SIGN IMAGES BY CNN WITH PERTURBATED TEST DATA

Label Stop No entry No stop Total
�𝐸𝐸CNN,o� 3 0 1 130
�𝐸𝐸CNN,s� 13 0 3 605
�𝐸𝐸CNN,r� 31 0 3 551
�𝐸𝐸CNN,n� 3 0 1 142

Cov(CNN, {o}) 0.9333 1.0000 0.9091 0.9484
Cov(CNN, {o, s}) 0.9333 1.0000 1.0000 0.9567
Cov(CNN, {o, r}) 0.9333 1.0000 0.9091 0.9595
Cov(CNN, {o, n}) 0.9333 1.0000 0.9091 0.9496

Cov(CNN, {o, s, r, n}) 0.9333 1.0000 1.0000 0.9655
Cer(CNN, {o, s}) 0.7111 1.0000 0.6364 0.7516
Cer(CNN, {o, r}) 0.3111 1.0000 0.7273 0.7702
Cer(CNN, {o, n}) 0.9333 1.0000 0.9091 0.9409

Cer(CNN, {o, s, r, n}) 0.2889 1.0000 0.6364 0.6583

Overall, we observe that the total error coverages are
improved by diverse algorithms, neural network architectures
and perturbated input data sets. The achieved total error
coverages are 0.9659, 0.9746, and 0.9655, respectively, while
the error coverage achieved only by CNN is 0.9484. As shown
in the line of Cov(CNN, Dense, Expand) in TABLE VIII, the
combination of three neural networks achieves the complete

coverages for classification of “Stop”, “No entry” and “No
stop”.

In traffic sign recognitions, accurate detections of “Stop”
sign and “No entry” sign are particularly important for safety
purpose in consideration with autonomous driving system.
Neglecting these signs may cause a serious traffic accident.
For “No entry” sign, it is relatively easy to recognize as all the
machine learning models do not have classification errors
even by perturbated data. While the classification of “Stop”
sign encounters some errors, the coverage of errors can be
improved by using the different machine learning models. It
can be noted that the classification errors of “Stop” sign are
fully covered by using the different neural network
architectures (in particular by adding the prediction results of
Dense network) (See TABLE VIII). Figure 6 visualizes the
overlaps of error spaces for classification of “Stop” sign
images by the different neural network architectures.

Figure 6. Error spaces of three neural networks for classification of traffic

sign images labeled “Stop”

Interestingly, for this specific task, Dense network
contributes to increase the coverage of errors against the
results from other neural networks, while it does not
contribute at all for the classification of zero in the MNIST
test data as seen in Figure 4. The results also can be attributed
to the power of diversity.

On the other side, the certainties of accurate predictions
are significantly decreased by adding different prediction
results. In particular for “Stop” sign classification, the
certainty decreases down to 0.2889 by combining four
prediction results from perturbated test data sets (See the line
Cer(CNN, {o, s, r, n}) in TABLE IX), even though there is no
improvement in the coverage. Therefore it is not a good option
to employ the input data diversity in such a particular case.
Since the decreases in the certainties of accurate predictions
by three different neural networks are relatively acceptable,
choosing this option could benefit the reliability of the system
using traffic sign recognitions.

IV. SYSTEM RELIABILITY MODEL AND ANALYSIS
In this section, based on the experimental observations, we

analytically investigate how the diversity of machine learning
modules can be leveraged for designing a reliable software
system. Since earlier studies on software fault-tolerance
techniques presented the reliability models for N-version
programming as well, we start from the reviews of the general
reliability model and then present our model that incorporates
the diversity parameter in terms of error spaces. In the
following analysis, we focus on the three-version architecture.
The system reliability is regarded as the probability that the
system output is correct in terms of input data from the real
world application context. Note that the accuracy of a machine
learning model on the test data set only gives an empirical

𝐸𝐸CNN

𝐸𝐸Expand

𝐸𝐸Dense

8

estimate of the module reliability and is not equal to the
system reliability discussed in the following.

A. Reliability model for N-version system
One of the common methods to determine the output of

N-version architecture is to take the majority vote of outputs
from N components. The traditional model defines 𝑅𝑅𝑖𝑖 as the
reliability of component i’s output and assumes each
component may output an error independently. The system
reliability by majority voting from N outputs can be given by

𝑅𝑅𝑁𝑁𝑁𝑁(𝑁𝑁) = 1 − � � �𝑅𝑅𝑖𝑖1−𝑘𝑘𝑖𝑖 ∙ (1 − 𝑅𝑅𝑖𝑖)𝑘𝑘𝑖𝑖
𝑁𝑁

𝑖𝑖=1 ∑ 𝑘𝑘𝑖𝑖𝑁𝑁
𝑖𝑖=1 =𝑘𝑘,
𝑘𝑘𝑖𝑖={0,1}

𝑁𝑁

𝑘𝑘=�𝑁𝑁2�+1

.

For N=3, we have
𝑅𝑅𝑁𝑁𝑁𝑁(3) = 𝑅𝑅1𝑅𝑅2 + 𝑅𝑅1𝑅𝑅3 + 𝑅𝑅2𝑅𝑅3 − 2𝑅𝑅1𝑅𝑅2𝑅𝑅3. (1)

When each component reliability is equivalent to R, the
reliability expression can be simplified as

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁) = � �𝑁𝑁𝑘𝑘� ∙ 𝑅𝑅
𝑘𝑘 ∙ (1 − 𝑅𝑅)𝑁𝑁−𝑘𝑘

𝑁𝑁

𝑘𝑘=�𝑁𝑁2�+1

.

When N=3, it becomes the reliability of triple module
redundancy (TMR) system that is given by 3𝑅𝑅2 − 2𝑅𝑅3. It is
well known that the reliability of TMR system is inferior to
the component reliability when R<1/2 [19].

Desirable N-version programming system implicitly
assumes or expects that individual versions are independent of
each other and hence common error is regarded as a rare case.
However, empirical studies showed that errors of software
versions largely correlated and they are not independent even
implemented by different teams [20][21]. Earlier analytical
studies also show that independently developed versions can
encounter coincident failures which results in decreased
software reliability [22][23]. To incorporate the factor of
dependent failure, the dependent failure parameter 𝛼𝛼 was
introduced that represents the similarity percentage of the
input sets on which each pair of versions fail [24]. The
reliability of an N-version programming system can be
expressed as

 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼,𝑁𝑁) = 1 − {𝑛𝑛𝛼𝛼𝑛𝑛−2𝑅𝑅(1 − 𝛼𝛼) + 𝛼𝛼𝑛𝑛−1𝑅𝑅}.

Note that the above model also assumes that the reliabilities
of individual components are equal to R. For N=3, we have

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼, 3) = 1 − 𝛼𝛼(3 − 2𝛼𝛼)(1 − 𝑅𝑅). (2)

The above models can be used for computing an estimate
of reliability of an N-version machine learning system.
However, the diversity of machine learning modules
observed in our experiments cannot be directly applied to
these existing models, which may cause under- or over-
estimate of the reliability. Therefore, we introduce the
reliability model for an N-version machine learning system
that incorporates the measures of diversity.

B. Reliability of three-version architecture with diversity
measure
Considering the diversity-affected metric used in the

experiments, we introduce the measure of diversity defined
by the intersection of error spaces

𝛼𝛼𝐼𝐼 ∶=
|⋂ ℰ𝑖𝑖𝑖𝑖∈𝐼𝐼 |

|𝒮𝒮| ,

where ℰ𝑖𝑖 represents the error space of machine learning
module 𝑚𝑚𝑖𝑖 from the total sample space 𝒮𝒮. In contrast to the
dependent failure parameter 𝛼𝛼 introduced by [24], the
measure is defined on the set 𝐼𝐼 and the values will change
depending on the members of set 𝐼𝐼. The reliability of three
version architecture using machine learning modules 𝑚𝑚1,𝑚𝑚2
and 𝑚𝑚3 can be expressed as follows.

𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) =

1 −
|ℰ1 ∩ ℰ2| + |ℰ1 ∩ ℰ3| + |ℰ2 ∩ ℰ3| − 2|ℰ1 ∩ ℰ2 ∩ ℰ3|

|𝒮𝒮| .

Using the diversity measure, we can rewrite the reliability as

𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) =
1 − �𝛼𝛼{1,2} + 𝛼𝛼{1,3} + 𝛼𝛼{2,3} − 2𝛼𝛼{1,2,3}�. (3)

Although the true values of 𝛼𝛼𝐼𝐼 are not known, empirical
estimates of the diversity measures can be computed from the
observed error spaces 𝐸𝐸𝑖𝑖 for a specific sample space S by

𝛼𝛼𝐼𝐼� =
|⋂ 𝐸𝐸𝑖𝑖𝑖𝑖∈𝐼𝐼 |

|𝑆𝑆| = 1 − Cov(𝐼𝐼).

Using the empirical estimates, the system reliability of
three version machine learning architectures with
(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) = (CNN, RF, SVM) for MNIST test samples
can be computed as shown in TABLE X. We also show the
computed system reliability by traditional reliability model
𝑅𝑅𝑁𝑁𝑁𝑁(3) from expression (1) and the reliability of TMR with
the averaged component reliability (i.e., (𝑅𝑅CNN + 𝑅𝑅RF +
𝑅𝑅SVM)/3), and the reliability model using dependent failure
parameter by expression (2) where we set 𝛼𝛼 = 𝛼𝛼�{CNN,RF}.

TABLE X. ESTIMATED SYSTEM RELIABILITY WITH EMPIRICAL
DIVERSITY

Module reliability 𝑅𝑅CNN 0.9891
 𝑅𝑅RF 0.9707
 𝑅𝑅SVM 0.9704

Empirical diversity 𝛼𝛼�{CNN,RF} 0.7523
 𝛼𝛼�{CNN,SVM} 0.6697
 𝛼𝛼�{RF,SVM} 0.5802
 𝛼𝛼�{CNN,RF,SVM} 0.6055

System reliability 𝑅𝑅3𝑉𝑉𝑉𝑉(CNN, RF, SVM) 0.9807
 𝑅𝑅𝑁𝑁𝑁𝑁(3) 0.9985
 TMR 0.9984
 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝛼𝛼�{CNN,RF}, 3� 0.9738

The system reliability of three-version architecture is
actually smaller than the best reliability by the module using
CNN (i.e., 𝑅𝑅3𝑉𝑉𝑉𝑉(CNN, RF, SVM) < 𝑅𝑅CNN). Although the
coverage of errors is increased by diverse models, the majority
voting often neglects the correct minority that results in
decreased reliability. Nevertheless, since the reliability of
three-version system is close to the reliability achieved by the
best machine learning module, it is worth taking N-version
architecture especially when there is less knowledge about
which machine learning module achieves the best (e.g., using
common models in a new application environment).

From TABLE X, we can also observe that the traditional
reliability model 𝑅𝑅𝑁𝑁𝑁𝑁(3) and TMR model overestimate the
reliability of three-version architecture, since the assumption
of independence of different version is not true. It is important
to estimate the intersection of error spaces and include it in the

9

reliability model. Meanwhile, the reliability model
𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝛼𝛼�{CNN,RF}, 3� underestimates the reliability. This is
caused by the simplified assumption that all the component
reliabilities are equal to R and dependent failure parameters
are equal to 𝛼𝛼 for any pairs of modules. Our reliability model
(3) can represent the system reliability more precisely.

C. A necessary condition for reliability improvement
Our experimental results indicate that the three-version

architecture may not effectively improve the system reliability
under a majority voting configuration. In order to analyze the
condition where the three-version architecture achieves a
better reliability, we compare 𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) with the
reliability of a single machine learning model. Assume 𝑚𝑚1 is
the model achieves the highest reliability among the other
models. The condition where the three-version architecture
achieves a better reliability than any single component is given
by 𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) − 𝑅𝑅1 > 0. Since 𝑅𝑅1 is defined by 1 −
|ℰ1| |𝒮𝒮|⁄ , the condition is
𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) − 𝑅𝑅1

=
|ℰ1| − {|ℰ1 ∩ ℰ2| + |ℰ1 ∩ ℰ3| + |ℰ2 ∩ ℰ3| − 2|ℰ1 ∩ ℰ2 ∩ ℰ3|}

|𝒮𝒮|

=
1

|𝒮𝒮| �
(|ℰ1| − |ℰ1 ∩ ℰ2| − |ℰ1 ∩ ℰ3| + |ℰ1 ∩ ℰ2 ∩ ℰ3|)

−(|ℰ2 ∩ ℰ3| − |ℰ1 ∩ ℰ2 ∩ ℰ3|) �

=
1

|𝒮𝒮| {|ℰ1 ∩ ℰ2��� ∩ ℰ3���| − |ℰ1��� ∩ ℰ2 ∩ ℰ3|} > 0,

where ℰ𝚤𝚤� represents the complementary set of ℰ𝑖𝑖. As a result,
we obtain the following necessary condition for reliability
improvement over the intersections of error spaces.

|ℰ1 ∩ ℰ2��� ∩ ℰ3���| − |ℰ1��� ∩ ℰ2 ∩ ℰ3| > 0 (4)

Although the true values of the terms in the above
condition are not obtainable, we can empirically count the
numbers of samples for individual terms through experiments
with a test data set. When the number of samples in 𝐸𝐸1 ∩ 𝐸𝐸2��� ∩
𝐸𝐸3��� is larger than that in 𝐸𝐸1��� ∩ 𝐸𝐸2 ∩ 𝐸𝐸3 for a given sample space
S, it is likely that three three-version architecture is effective.

D. A system design guide
From our findings through the experiments and reliability

analysis, we summarize the guides for engineering reliable
systems using diverse versions of machine learning modules.

• Exploiting input diversity
Among several approaches to diversifying the outputs of
machine learning models, the approach using perturbated
input data can be easily introduced because it does not need
to prepare multiple machine learning models. If the
coverage of errors increases by perturbated input data
through experiments, it is worth considering to take a multi-
version architecture for improving system reliability.

• Using multi-version models for error detection
As we observed in the experiments, different machine
learning models have quite different error coverages. One
of the direct applications of this property is using multi-
version models for an error detection function. If any
disagreement occurs among the multiple prediction results
from different modules, there must be a prediction error. In
this case, we can discard the prediction results to avoid

undesirable consequence to the system and/or issue alert to
higher level component.

• Estimating carefully the effectiveness of three-version
architecture with majority voting

When employing an N-version architecture using three-
version machine learning modules and majority voting, it is
encouraged to carefully assess the reliability improvement
using our reliability model. From a test data set, we can
compute the sizes of error spaces 𝐸𝐸1 ∩ 𝐸𝐸2��� ∩ 𝐸𝐸3��� and 𝐸𝐸1��� ∩
𝐸𝐸2 ∩ 𝐸𝐸3 empirically. Comparing these sizes with respect to
the necessary condition (4), we can have a guide to decide
whether three-version machine learning models can be
effectively used under the majority voting or not.

V. RELATED WORK
Multi-version machine learning approaches have been

studied in different contexts and purposes; i) for generating a
better machine learning model in terms of accuracy, ii) for
testing an implementation of machine learning algorithm, and
iii) for improving the reliability of the system using machine
learning models. Our work focused on characterizing the
diversity of error outputs of different machine learning
models and are closely related to these related studies as
discussed below.

First, to obtain a well performed supervised machine
learning model, ensemble learning [24] is a commonly
adopted technique in which multiple models are combined to
improve the prediction accuracy. Random forest [14] is also
known as an ensemble learning method that generates
multiple decision trees by random sampling from training
data set. While empirically ensemble learning methods often
yield a better result, theoretically there is no guarantee for
improved accuracy. The improved accuracy by ensemble can
be attributed by the diversity of machine learning models.
The relationship between several diversity measures and
empirical prediction accuracy was extensively studied [26].
A variety of diversification methods for machine learning
processes and the applications of the diversity technology are
surveyed [27]. While our work also looks into the diversity in
terms of the coverage of errors attained by machine learning
models, our focus is not on learning process itself. Our
objective is to leverage the diversity to improve the system
reliability, and thus we present the reliability model that
connects the empirical diversity measure and the system
reliability achieved by three-version architecture.

Second, a multi-version machine learning approach is
used for testing implementations of machine learning
algorithms. Ensuring the quality of the products or services
using machine learning is a challenging issue since in practice
there is no complete oracle that can guarantee the expected
prediction results for new input. The problem “no oracle” in
testing machine learning models has been discussed [28] and
a metamorphic testing approach was presented. A multi-
version machine learning approach is recently introduced
[29]. To test the output of a machine learning model, an
alternative version of machine learning model is used for
creating a proxy oracle. The approach can effectively find the
implementation faults of machine learning algorithm. While
this work uses the multi-version approach in a testing phase
to improve a single machine learning model, our study
considers the architecture of machine learning system using

10

multiple models. Multi-version approaches can be used both
in testing and architecture design phases.

Third, some recent studies attempt to apply N-version
programming approach to machine learning systems
considering the system level reliability. A recent study
presented the architecture using three redundant deep neural
networks with weighted majority voting for predicting
steering angle of autonomous vehicle [30]. Preliminary results
showed the improved reliability by N-version architecture.
Our experimental results with multiple neural network
architectures, however, did not improve the reliability. This
is probably caused by the difference of voting mechanism
used. An N-version approach using multiple deep neural
networks is also studied by NV-DNN [31]. While the different
training process, network architectures and training data sets
are examined, the diversification approach by perturbated
input data has not been studied. Although a recent theoretical
study analyzes the potential reliability enhancement by using
different input data for prediction [32], our work first
experimentally shows that the coverages of errors are
improved by using varied input data. Moreover, our study
clarifies the condition where three-version machine learning
architecture achieves better system reliability than the best
machine learning module, which has not been presented in the
previous literature for N-version machine learning systems.

VI. CONCLUSION
In this paper, we have experimentally evaluated the

diversity of machine learning models for image classification
tasks toward designing a reliable machine learning system.
The impact of diversity is quantified by the coverage of errors
defined as the ratio of the samples that are not correctly
predicted by a given set of machine learning models. We also
quantified the certainty of accurate prediction that has a trade-
off relationship with the coverage of errors. Our experimental
results show that the coverages of errors are increased by
using different machine learning algorithms, different neural
network architectures and perturbated input data, while the
certainties of predictions are decreased in most cases. With
this observation, we presented the reliability model for three-
version machine learning architecture that takes into account
the intersections of error spaces of machine learning models.
The presented reliability model is used to characterize the
necessary condition under which the three-version
architecture achieves a higher reliability than the reliability of
the best module. While this paper focuses on three-version
architecture, generalization of the reliability model for N-
version architecture will be discussed in the future work.
Since our experimental results are limited to image
classification tasks, extending the study for other fields like
voice recognition and natural language processing is also an
important future work.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, nature, Vol. 521,

No. 7553, pp. 436, 2015.
[2] D. Sculley et al., Hidden technical debt in machine learning systems.

In Proc. of Advances in Neural Information Processing Systems, pp.
2503-2511, 2015.

[3] A. Avizienis and L. Chen, On the implementation of N-version
programming for software fault tolerance during execution. In Proc. of
IEEE International Computer, Software and Application Conference
(COMPSAC), pp. 149–155, 1977.

[4] A. Avizienis, The methodology of n-version programming, Software
fault tolerance, Vol. 3, pp. 23-46, John Wiley & Sons, New York, 1995.

[5] Y. LeCun, C. Cortes, and C. Burges, The MNIST database of
handwritten digits, http://yann.lecun.com/exdb/mnist/, retrieved in
May, 2019.

[6] M. Mathias, R. Timofte, R. Benenson, and L. Van Gool, Traffic sign
recognition - How far are we from the solution?, In Proc. of
International joint conference on Neural networks, pp. 1-8, 2013.

[7] B. Zoph, and Q. V. Le, Neural architecture search with reinforcement
learning, arXiv:1611.01578, 2016.

[8] H. Liu, K. Simonyan, and Y. Yang, Darts: Differentiable architecture
search, arXiv:1806.09055, 2018.

[9] I. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing
adversarial examples, arXiv:1412.6572, 2014.

[10] N. Carlini, D. Wagner,Towards evaluating the robustness of neural
networks, In Proc. of IEEE Symposium on Security and Privacy (SP),
pp. 39-57, 2017.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards
deep learning models resistant to adversarial attacks,
arXiv:1706.06083, 2017.

[12] J. Su, D. V. Vargas, K. Sakurai, One pixel attack for fooling deep
neural networks, IEEE Trans. on Evolutionary Computation, 2019

[13] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, Safety verification
of deep neural networks, In Proc. of International Conference on
Computer Aided Verification, pp. 3-29, 2017.

[14] L. Breiman, Random forests, Machine learning, Vol. 45, No. 1, pp. 5-
32, 2001.

[15] C. Cortes, and V. Vapnik, Support-vector networks, Machine Learning,
Vol. 20, No. 3, pp. 273-297, 1995.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

[17] scikit-learn, https://scikit-learn.org
[18] Keras, https://keras.io/
[19] K. S. Trivedi, Probability and statistics with reliability, queuing, and

computer science applications, John Wiley, New York, 2001.
[20] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F.

McAllister, M. A. Vouk, and J. P. J. Kelly, An experimental evaluation
of software redundancy as a strategy for improving reliability, IEEE
Trans. on Software Eng., Vol. 17, No.7, pp. 692-702, 1991.

[21] J. C. Knight, N. G. Leveson, An experimental evaluation of the
assumption of independence in multiversion programming, IEEE
Trans. on Software Eng., Vol. SE-12, No.1, pp. 96-109, 1986.

[22] D. E. Eckhardt, L. D. Lee, A theoretical basis for the analysis of
multiversion software subject to coincident errors, IEEE Trans.
Software Eng., Vol. SE-11, No. 12, pp. 1511-1517, 1985.

[23] B. Littlewood, D.R. Miller, Conceptual modeling of coincident failures
in multiversion software, IEEE Trans. on Software Eng., Vol. 15, No.
12, pp.1596-1614, 1989.

[24] M. Ege, M.A. Eyler, M.U. Karakas, Reliability analysis in N-version
programming with dependent failures, In Proc. of 27th EUROMICRO
Conference, pp. 174-181, 2001.

[25] T. Dietterich, Ensemble methods in machine learning, In Proc. of
international workshop on multiple classifier systems, pp. 1-15, 2000.

[26] L. I. Kuncheva, and C. J. Whitaker, Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy, Machine
learning, Vo. 51, No.2, pp. 181-207, 2003.

[27] Z. Gong, P. Zhong, and W. Hu, Diversity in Machine Learning,
arXiv:1807.01477, 2018.

[28] C. Murphy and G. E. Kaiser, Improving the dependability of machine
learning applications, Technical report, Columbia University, 2008.

[29] S. Srisakaokul, Z. Wu, A. Astorga, O. Alebiosu, and T. Xie, Multiple-
implementation testing of supervised learning software., In Proc. of
workshops at 32nd AAAI Conference on Artificial Intelligence, 2018.

[30] A. Wu, A. H. M. Rubaiyat, C. Anton, and H. Alemzadeh, Model
Fusion: weighted N-version programming for resilient autonomous
vehicle steering control. In Proc. of IEEE International Symposium on
Software Reliability Engineering Workshops, pp. 144-145, 2018.

[31] H. Xu, Z. Chen, W. Wu, Z. Jin, S. Kuo, M. R. Lyu, NV-DNN: towards
fault-tolerant DNN systems with N-version programming, In Proc. of
the DSN Workshop on Dependable and Secure Machine Learning, pp.
44-47, 2019.

[32] F. Machida, N-version machine learning models for safety critical
systems, In Proc. of the DSN Workshop on Dependable and Secure
Machine Learning, pp. 48-51, 2019.

	I. Introduction
	II. Diversity of machine learning models
	A. Training data
	B. Machine learning algorithm
	1) Hyper parameters
	2) Architecture of neural networks

	C. Input data for prediction

	III. Experimental study
	A. Diversity affected metrics
	B. Algorithm diversity
	C. Architectural diversity
	D. Input data diversity
	E. Classification of traffic sign images

	IV. System reliability model and analysis
	A. Reliability model for N-version system
	B. Reliability of three-version architecture with diversity measure
	C. A necessary condition for reliability improvement
	D. A system design guide

	V. Related work
	VI. Conclusion
	References

