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Abstract— The diversity of system components is one of the 
important contributing factors of reliable and secure software 
systems. In a software fault-tolerant system using diverse 
versions of software components, a component failure caused by 
defects or malicious attacks can be covered by other versions. 
Machine learning systems can also benefit from such a multi-
version approach to improve the system reliability. Nevertheless, 
there are few studies addressing this issue. In this paper, we 
experimentally analyze how outputs of machine learning 
modules can be diversified by using different versions of 
machine learning algorithms, neural network architectures and 
perturbated input data. The experiments are conducted on 
image classification tasks of MNIST data set and Belgian Traffic 
Sign data set. Different neural network architectures, support 
vector machines and random forests are used for constructing 
diverse machine learning models. The diversity is characterized 
by the coverage of errors over the test samples. We observe that 
the different machine learning models have quite different error 
coverages that can be leveraged for system reliability design. 
Based on the experimental results, we construct the reliability 
model for three-version machine learning architecture with a 
diversity measure defined as the intersection of error spaces in 
the sample space. From the presented reliability model, we 
derive a necessary condition under which three-version 
architecture achieves a higher system reliability than a single 
machine learning module. 

Keywords— Diversity, image classification, machine learning, 
reliability, software fault-tolerance 

I. INTRODUCTION 
Machine learning is becoming an important building block 

of many intelligent software systems. A wide variety of 
machine learning algorithms are used for extracting the 
features of training data set and constructing machine learning 
models for the tasks such as regression and classification. In 
particular, deep neural networks [1] have been widely adopted 
in many practical applications implementing functions like 
image classification, voice recognition and machine 
translation. Although a machine learning model takes just a 
small portion of the whole software system [2], it often 
provides the core of intelligence and hence any incorrect 
outputs of the machine learning model may cause undesirable 
system reliability.  

Unlike a software component whose input-output relation 
is specified explicitly in advance, the output of a machine 
learning model is quite uncertain as it depends on the data and 
the algorithm used in the training process. It is extremely 
difficult to fully guarantee correct outputs of machine learning 
models in a production environment. Therefore, in a design of 
a software system employing machine learning models, it is 
important to premise the errors in the outputs from the 
machine learning modules and take relevant measures to mask 
such errors toward improving system reliability. 

To design a reliable machine learning systems, in this 
paper we investigate the diversity of outputs from different 

machine learning modules. The study is motivated from N-
version programming that is a well-established software fault 
tolerant technique originally proposed in the nineteen-
seventies [3][4]. The essence of N-version programming is 
exploiting diversity of software components by using different 
implementations from the same original specification. With 
multi-version software implementations, even when one 
software component outputs an error due to a defect in the 
implementation, another software version which does not 
have the same defect can mask the error. Machine learning 
system can borrow this idea to improve the reliability of the 
system output. Although the output of a machine learning 
model for an unknown input is uncertain, the uncertainty can 
be a source of diversity that potentially contributes to mask the 
errors of the outputs. It is an interesting research question how 
machine learning models for the same task can be diversified 
by varying machine learning algorithms, choice of hyper-
parameters or configurations, and input data for predictions. 
While many studies in machine learning algorithm focus on 
maximizing the accuracy by reducing classification or 
prediction errors, less work looks into the diversity of error 
outputs of different machine learning models. 

In this paper, first we experimentally analyze the diversity 
of machine learning models in terms of error outputs by using 
different algorithms, neural network architectures and varied 
input data. In the experiments, we use two data sets, namely 
MNIST handwritten digit data set [5] and Belgian Traffic Sign 
data set [6]. Both the data sets are available online and widely 
used for benchmarking of machine learning algorithms for 
image classification tasks. For machine learning algorithms, 
we use a support vector machine, random forests and some 
different types of neural networks. After constructing the 
models for the classification tasks from the same training data 
sets, we compare the prediction errors from the different 
models using the test data sets. The objective of comparison is 
not to find the best classifier, but to understand the difference 
of capabilities of individual models. To this end, we compute 
the coverage of errors that is defined as the ratio of the test 
samples that cannot be accurately classified by a given set of 
machine learning models. The coverage of errors increases by 
using multiple machine learning models that have different 
classification capabilities. For MNIST data sets, we observe 
that the coverage of errors reaches 99.34% by using three 
different machine learning models, while the standalone best 
single classifier’s coverage is 98.91%. We also confirm that 
by using different neural network architectures and different 
input data sets the coverages  reach 99.71% and 99.58%, 
respectively. Similar results are obtained for Belgian Traffic 
Sign data set as well. We also consider the negative influences 
of the diversity on the certainty of predictions. The number of 
samples that are accurately predicted by all the machine 
learning models decreases by using different prediction results. 
The experimental results show that the increased coverage of 
errors is gained with the cost of the reduced certainty of 
accurate predictions. 
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With the experimental results, next we analytically show 
the potential reliability enhancement by employing an N-
version machine learning architecture that uses three different 
machine learning modules with majority voting. Intuitively, 
the N-version architecture can effectively leverage the 
diversity of machine learning models toward an improved 
system reliability. However, our analysis on experimental 
results does not agree with this expectation. To analyze this, 
we construct a reliability model for a three-version machine 
learning system with a diversity measure. From this model, we 
derive the necessary condition under which the reliability of 
the three-version architecture overcomes the reliability of the 
best machine learning module. When the condition does not 
hold, the majority voting is likely to become a bottleneck for 
reliability enhancement, even though the coverage of errors 
are increased by the different machine learning models.  

Our findings can be summarized as the following guides 
for engineering reliable machine learning systems. 

1. Outputs of machine learning modules can be diversified 
by using perturbated input data (e.g., adding a noise, 
shifting pixels etc.) without using multiple machine 
learning models. Our experimental results show that the 
diversified outputs by perturbated input data can gain the 
increased coverage of errors. Since this approach can be 
tested with a relatively small cost, it is worth considering 
before preparing multiple machine learning models. 

2. Diverse versions of machine learning models are primarily 
useful for detecting prediction errors in a machine learning 
system. We observe that the coverage of errors are 
increased by adding different prediction results from 
diverse machine learning models in most cases. Although 
the certainty of accurate predictions may decrease by 
considering different prediction results, the increased 
coverage is particularly important for safety critical tasks 
such as stop sign recognition in an autonomous vehicle. 

3. An N-version architecture with three machine learning 
models with a majority voting does not always improve 
the system reliability compared with the standalone best 
machine learning model. Our reliability model considering 
the intersections of error spaces shows the necessary 
condition where the three-version architecture can achieve 
better reliability than the best machine learning model. 

The remainder of the paper is organized as follows. 
Section II comprehends the diversity of machine learning 
models in terms of system reliability and categorizes the 
factors of diversity. Section III shows the results of 
experimental study on machine learning algorithms for image 
classification tasks. We show how different machine learning 
models output errors differently and statistically characterize 
the diversity of the models. Section IV provides the analytical 
reliability model for a three-version machine learning 
architecture and shows the necessary condition for potential 
reliability enhancement. Section V discusses related work and 
Section VI gives our conclusion. 

II. DIVERSITY OF MACHINE LEARNING MODELS 
In this section, we introduce the concept of diversity for 

reliable software systems using machine learning modules. 
One of the techniques to exploit the diversity for improving 
the software system reliability is N-version programming that 
uses multiple generations of functionally equivalent programs 
from the same initial specification [3][4]. Machine learning 

systems can also benefit from the diversity of the components 
for designing the system reliability. On one hand, similar to 
software components, different implementations of machine 
learning algorithms can potentially mask the errors caused by 
software faults. On the other hand, the behavior of machine 
learning modules can also be diversified by machine learning 
algorithms, configurations, training data and input data sets. 
This paper focuses on the latter case and looks into how we 
can diversify the outputs of machine learning modules using 
different approaches. The potential contributing factors to 
improve the diversity of machine learning modules are 
explained below. 

A. Training data 
Unlike a software component which is implemented from 

the initial specification, a machine learning model is 
constructed from observed data without any functional 
specifications. Both of the amount and the quality of training 
data highly impact on the functional behavior of the generated 
machine learning model. This means that a subtle difference 
of training data set can cause a big difference of the functional 
behavior of the machine learning model. We can obtain 
different versions of machine learning modules by using 
different training data sets for training the models. In practice, 
however, all the available data are effectively used for 
generating the best machine learning model. Ensemble 
learning [24] is a commonly adopted machine learning 
technique that uses weak learning algorithms and random 
sampling from the training data set. When such a technique is 
used in the training process, it can be regarded that the 
diversity of training data is already exploited for the purpose 
of creating a reliable machine learning module. 

B. Machine learning algorithm 
Even from the same training data set, the functional 

behavior of machine learning models can be diversified 
considerably by using different machine learning algorithms. 
There are a number of machine learning algorithms available 
for tasks such as classification, recognition, regression and 
prediction. Individual algorithms have thier own theory and 
different characteristics. Although recently deep learning 
appears to mostly outperform other algorithms, there is no 
theoretical guarantee that deep learning generally achieves the 
best performance for any kind of tasks. Even when an 
approach achieves the best performance in a specific task, 
there is a possibility that other algorithms have different error 
coverages as we will see in our experiments in the following 
section. Therefore, different machine learning algorithms can 
contribute to generate different versions of machine learning 
models for the same task.  

Two special sub-classes of the diversity factor in machine 
learning algorithm are hyper parameters and neural network 
architecture as explained below. 

1) Hyper parameters 
Machine learning algorithms often have parameters to be 

tuned for generating more accurate models. These parameters 
are called hyper parameters, since they determine the process 
of learning algorithm such as the number of iterations, the 
threshold to complete the process and the batch size to process 
the data. The best combination of the hyper parameter values 
which can generate the most accurate model is not known a 
priori. Therefore, how to effectively search the best parameter 
values is an important research challenge. It should be noted 
that however the best model found by a parameter search 
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method is not always the superset of all the other models. Even 
when the most accurate model outputs error by a certain input, 
any less accurate model may not have the same error by the 
same input data. Error coverages of the models generated by 
different hyper parameter values can be different. Thus, the 
choice of hyper parameter values can also contribute to the 
diversity of machine learning models. 

2) Architecture of neural networks 
A wide variety of neural network architectures have been 

presented in particular after the success of deep neural 
network. Neural network is a type of machine learning method 
that imitates the human brain neural process for learning. A 
neural network consists of layers of neurons each of which has 
some connections to the adjacent layers’ neurons with some 
weights. An architecture of neural network represents the 
connections of neurons as well as the numbers and the types 
of layers. Similar to hyper parameters, the best architecture for 
a specific problem is not known a priori, and hence 
architectural search techniques are actively investigated [7][8]. 
Since the error outputs of neural networks constructed from 
different architectures can be different, the choice of 
architecture is also considered as a contributing factor of the 
diversity. We will experimentally examine this in Section III. 

C. Input data for prediction 
Training data set and machine learning algorithm are the 

key sources of machine learning models. The output of 
obtained model, however, is quite sensitive to the input data 
for prediction as well. It is known that a subtle perturbation of 
input data can easily confuse a machine learning model to 
output error. Recently such a problem is referred to as 
adversarial example [9] and actively investigated in the 
research community [10][11][12]. For example, just one pixel 
change over the image of red traffic light on the road can cause 
mis-classification as green right with over 90% confidence 
[13]. Since the input data around the border of classes may 
have such characteristics, opposite can also happen. It means 
that just a subtle perturbation of input data can flip an error 
case to a correct output. Machine learning modules receiving 
different input data from the same source can have different 
error coverages due to their sensitivities to input data. We can 
diversify the output of machine learning modules by varying 
input data in the operation. It should be noted that our goal is 
to improve system reliability in operation instead of training 
the best machine learning model. Diversifying the input data 
is particularly effective when we only have a best trained 
machine learning model and no means to add another model 
for the same task. The approach can also be employed after 
deployment of the model on the target system because we can 
simply insert a data preprocessing stage before the process of 
machine learning model to perturbate the outputs. The impact 
of input data diversity is  experimentally examined in the next 
section. 

III. EXPERIMENTAL STUDY 
In this section, we experimentally show the diversity of 

machine learning models for image classification tasks that 
will potentially increase the classification error coverage. Our 
experiments are based on comparative evaluations of various 
machine learning models with different configurations and 
varied input data. The main objective of comparative 
evaluation is not on the benchmark of different machine 
learning models, but on characterizing the difference of error 
spaces of input data by various machine learning models. To 

quantitatively understand the diversity of machine learning 
models, we evaluate the coverage of errors over the test 
samples, which is formally defined in Section III-A. 

The experiments are conducted on the image classification 
tasks for MNIST handwritten digit data set [5] and Belgian 
Traffic Sign data set  [6]. MNIST data set is a well-known 
image classification benchmark that is composed of 28*28 
pixels images for digits. 60000 examples are contained in the 
training data set and 10000 examples are included in the 
testing data set. On the other hand, Belgian Traffic Sign data 
set is a real world traffic sign image data set that can be 
divided into 62 different types of signs. 4591 examples are 
available as the training data set and additional 2534 examples 
are provided as the testing data set. Since the original images 
of Belgian Traffic Sign data are formatted in different sizes, 
we normalized the image data in 32*32 pixels. For machine 
learning algorithms, we employ random forests [14], support 
vector machine [15] and artificial neural networks [16]. 
Random forests use a random sampling of training data and 
generate multiple decision trees. For classification tasks, a 
majority voting of decision trees is taken. Compared to other 
state-of-art algorithms, both of the training and inference runs 
very fast. Support vector machine is a supervised machine 
learning algorithm exploring a hyperplane that has the largest 
distance to the nearest training-data point of any class. Since 
the obtained hyperplane has high generalization capability, the 
accuracy of classification is generally good. Artificial neural 
network is a computational model inspired by the neural 
structure of animal’s brain. In this paper, we particularly use 
convolutional neural network (CNN) and multilayer 
perceptron that can be trained by a back-propagation 
algorithm. Due to the good classification performance, neural 
networks are now widely used for image classification, voice 
recognition and machine translation applications. 

A. Diversity affected metrics 
To investigate the diversity of machine learning models, 

we characterize the subset of sample space for individual 
machine learning models that can cause classification errors. 
We refer to this subset as error space of a machine learning 
model. Individual machine learning models may have 
different error spaces. Thereby, the classification error by a 
machine learning model can be masked if another machine 
learning model can classify the same sample correctly. To 
quantify the increased error masking capability by diverse 
machine learning models, we introduce the coverage of errors 
as defined below.  

Definition: Coverage of errors 
Given a set of machine learning models ℳ = {𝑚𝑚1,𝑚𝑚2, … }, 
let 𝐸𝐸𝑖𝑖  be the observed error space of a machine learning 
model 𝑚𝑚𝑖𝑖  for the test samples 𝑆𝑆. The coverage of errors is 
defined as 

Cov(ℳ) = 1 −
�⋂ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈ℳ �

|𝑆𝑆| . 

The coverage values reach one when any test sample can be 
classified correctly at least by a machine learning model. Note 
that the coverage of errors for a single machine learning model 
is equal to the accuracy of the model over the test examples. 
The coverage value can be increased by adding other machine 
learning models that have different error spaces. 

The diversity of  machine learning models also influences 
on the uncertainty of prediction results. Even when a machine 
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learning model predicts the label correctly, the result can 
become uncertain if another prediction result from different 
machine learning model does not agree on the correct label. 
By adding prediction results from diverse machine learning 
models, the number of samples that are correctly predicted by 
all the models decreases. Since this negative impact of 
diversity also needs to be analyzed, we introduce the certainty 
of accurate prediction which is defined as below. 

Definition: Certainty of accurate prediction 
Given a set of machine learning models ℳ = {𝑚𝑚1,𝑚𝑚2, … }, 
let 𝐸𝐸𝑖𝑖  be the observed error space of a machine learning 
model 𝑚𝑚𝑖𝑖  for the test samples 𝑆𝑆. The certainty of accurate 
prediction is defined as 

Cer(ℳ) = 1 −
�⋃ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈ℳ �

|𝑆𝑆| . 

The certainty of accurate prediction represents the ratio of test 
samples whose labels are correctly predicted by all the 
machine learning models in ℳ . The certainty of accurate 
prediction for a single machine learning model is equal to the 
accuracy of the model. The certainty value decreases by 
adding different outputs from machine learning models that 
has different error spaces. 

B. Algorithm diversity 
First, we evaluate the diversity of machine learning 

models generated from three machine learning algorithms 
using MNIST data set. We use scikit-learn [17] for the 
implementation of random forest (RF) and support vector 
machine (SVM). The parameters of random forest are chosen 
by a grid search method that selects the best performed 
parameter value set. For SVM, we use support vector classifier 
and set the parameter gamma and C to 0.001 and 100, 
respectively. While each pixel of original image data ranges 
from 0 to 255 which represents the grayscale, we use digitized 
values for training and testing the support vector classifier. For 
artificial neural network, we use Keras [18] implementation of 
CNN and configure the network with a convolutional layer, a 
max pooling layer and a fully-connected layer as shown in 
Figure 1, which we follow the network visualization by Keras. 
Categorical cross entropy is used for loss function and Adam 
is used for optimizer. In the training of the CNN, the batch size 
is set to 128 and the final model is obtained after ten epochs. 
After building three models with 60000 of training samples, 
we predict the labels of testing data set and compare the 
predicted labels with correct labels. 

 

 
Figure 1. CNN architecture used in the experiments 

TABLE I shows the number of classification errors of 
individual digits by three algorithms. We denote |𝐸𝐸X| as the 
number of errors by the model X that is either CNN, RF or 
SVM. As can be seen, while the number of samples differs 
among the digits (varying from 892 to 1135), CNN achieves 
the smallest classification errors for all the digits. This result 
only, CNN is considered as the best classifier among three 
models in terms of the label prediction accuracy. Then, our 
next question is how the coverage of errors can be improved 
by adding the prediction results from the different models. 
TABLE II shows the improved error coverages by combining 
CNN with RF, SVM and both. For all the digits, the coverages 
of errors are improved by adding the prediction results of other 
models. This means that even when CNN incorrectly predicts 
the labels for some test samples, the other models can predict 
the labels correctly. The error coverage is maximized when 
three models are used together (See the values of the line  
Cov(CNN, RF, SVC)). The total error coverage reaches 0.9934, 
whereas the best coverage achieved by CNN is 0.9891. The 
result clearly shows that the different models have different 
error spaces that can potentially enhance the error masking 
capability. Meanwhile, diverse machine learning models also 
cause the increase in the total error space. In TABLE II, the 
decreased certainties of accurate predictions are summarized 
as well.  When we use the prediction results from three models, 
the certainty of correct prediction for total samples decreases 
down to 0.9561, whereas the original accuracy of CNN is 
0.9891. This means that about 4.4% of test samples there are 
disagreement among the prediction results from the different 
models. 

Input layer Output shape (28, 28, 1)

Convolutional layer Output shape (24, 24, 32)

Max pooling layer Output shape (12, 12, 32)

Dropout layer Output shape (12, 12, 32)

Flatten layer Output shape (4608)

Fully-connected layer Output shape (128)

Softmax layer Output shape (10)

TABLE I. NUMBER OF CLASSIFICATION ERRORS BY DIFFERENT MACHINE LEARNING MODELS 

Label 0 1 2 3 4 5 6 7 8 9 Total   
|𝑆𝑆| 980 1135 1032 1010 982 892 958 1028 974 1009 10000 

|𝐸𝐸CNN| 3 6 11 3 5 9 22 11 11 28 109 
|𝐸𝐸RF| 10 13 36 34 26 30 19 37 41 47 293 

|𝐸𝐸SVM| 11 12 26 27 32 42 25 39 40 42 296 
 

TABLE II. ERROR COVERAGES AND CERTAINTY OF PREDICTIONS BY ADDING PREDICTION RESULTS FROM DIFFERENT MACHINE LEARNING MODELS 

Label 0 1 2 3 4 5 6 7 8 9 Total   
Cov(CNN) 0.9969 0.9947 0.9893 0.9970 0.9949 0.9899 0.9770 0.9893 0.9887 0.9722 0.9891 

Cov(CNN, RF) 0.9980 0.9965 0.9903 0.9980 0.9949 0.9922 0.9854 0.9912 0.9908 0.9802 0.9918 
Cov(CNN, SVC) 0.9980 0.9965 0.9942 0.9980 0.9969 0.9944 0.9843 0.9912 0.9928 0.9802 0.9927 

Cov(CNN, RF, SVC) 0.9980 0.9974 0.9942 0.9980 0.9969 0.9944 0.9864 0.9932 0.9928 0.9822 0.9934 
Cer(CNN, RF) 0.9888 0.9868 0.9641 0.9653 0.9735 0.9641 0.9718 0.9621 0.9559 0.9455 0.9680 

Cer(CNN, SVC) 0.9878 0.9877 0.9700 0.9723 0.9654 0.9484 0.9666 0.9601 0.9548 0.9504 0.9668 
Cer(CNN, RF, SVC) 0.9847 0.9833 0.9525 0.9525 0.9582 0.9395 0.9614 0.9465 0.9343 0.9435 0.9561 
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For the classification of the images labeled “0”, we 
visualize the difference and overlaps of error spaces of three 
models in Figure 2. Only two out of 980 samples cannot be 
accurately classified by any models (i.e., |𝐸𝐸CNN ∩ 𝐸𝐸RF ∩
𝐸𝐸SVC| = 2 ). Except for the depicted fifteen samples (in 
𝐸𝐸CNN ∪ 𝐸𝐸RF ∪ 𝐸𝐸SVC), three models agree with the correct label 
prediction. 

 
Figure 2. Error spaces of three machine learning models for classification 

of test samples labeled “0” 

C. Architectural diversity 
Next, we focus on neural network and use different 

architectures to test whether the error of coverages can be 
improved by varying network architectures. In addition to the 
CNN used in the previous section, we introduce two different 
architectures of neural networks as shown in Figure 3 in the 
visualization format by Keras. Dense network consists of two 
fully-connected layers and it does not have any convolutional 
layers. Expand network extends the original CNN with 
another convolutional layer, a max pooling layer and a fully 
connected layer. These neural networks are trained in the same 
configurations used for the original CNN. 

TABLE III shows the number of classification errors 
observed for the same test samples by three neural networks. 
Both of CNN and Expand network achieve good classification 
accuracy. Nevertheless, there are still some prediction errors 
to be corrected. We investigate the coverage of errors by 
combining the prediction results of three neural network 
architectures. The coverage of errors is summarized in 
TABLE IV. The results clearly show that the coverages of 
errors are improved for all the labels by adding the prediction 
results with the different neural network architectures. The 
total error coverage reaches 0.9971 by using three 
architectures. For the classification of the test samples labeled 

“0”, only one example remains uncovered by the predictions 
by three networks (i.e., �𝐸𝐸CNN ∩ 𝐸𝐸Dense ∩ 𝐸𝐸Expand� = 1). 

 
Figure 3. Architecture of dense network and expand network 

 Figure 4 shows the overlaps of error spaces of three neural 
networks for the test samples labeled “0”. Since 𝐸𝐸Dense is a 
superset of 𝐸𝐸CNN  and 𝐸𝐸Expand , Dense network does not 
improve the coverage of errors against CNN and Expand. On 
the other hand, since 𝐸𝐸Expand contains a sample which is not 
in 𝐸𝐸CNN , Expand network improves the coverage of errors 
against CNN. 

 
Figure 4. Error spaces of three neural networks for classification of test 

samples labeled “0” 

TABLE IV also shows the decreased certainties of 
accurate predictions. By adding the prediction results from the 
different neural networks, the union of error spaces enlarge 
that causes decreased certainties. When we use three neural 
networks, the certainty is reduced to 0.9766, which is not so 
significant as the case of three different algorithms observed 

𝐸𝐸CNN

𝐸𝐸RF
𝐸𝐸SVC

Input layer Output shape (512)

Fully-connected layer Output shape (512)

Dropout layer Output shape (512)

Fully-connected layer Output shape (512)

Dropout layer Output shape (512)

Softmax layer Output shape (10)

Input layer Output shape (28, 28, 1)

Convolutional layer Output shape (24, 24, 30)

Max pooling layer Output shape (12, 12, 30)

Dropout layer Output shape (5, 5, 15)

Flatten layer Output shape (375)

Fully-connected layer Output shape (50)

Softmax layer Output shape (10)

Convolutional layer Output shape (10, 10, 15)

Max pooling layer Output shape (5, 5, 15)

Fully-connected layer Output shape (128)

Dense network Expand network

𝐸𝐸CNN
𝐸𝐸Dense

𝐸𝐸Expand

TABLE III. NUMBER OF CLASSIFICATION ERRORS BY DIFFERENT NEURAL NETWORKS 

Label 0 1 2 3 4 5 6 7 8 9 Total   
|𝐸𝐸CNN| 3 6 11 3 5 9 22 11 11 28 109 

|𝐸𝐸Dense| 9 6 12 13 21 19 11 19 22 23 155 
�𝐸𝐸Expand� 2 9 4 8 12 9 16 11 7 11 89 

 
TABLE IV. ERROR COVERAGES AND CERTAINTY OF PREDICTIONS BY ADDING PREDICTION RESULTS FROM DIFFERENT NEURAL NETWORKS 

Label 0 1 2 3 4 5 6 7 8 9 Total   
Cov(CNN) 0.9969 0.9947 0.9893 0.9970 0.9949 0.9899 0.9770 0.9893 0.9887 0.9722 0.9891 

Cov(CNN, Dense) 0.9969 0.9974 0.9952 0.9980 0.9969 0.9933 0.9906 0.9922 0.9938 0.9891 0.9944 
Cov(CNN, Expand) 0.9990 0.9974 0.9971 0.9980 0.9959 0.9933 0.9875 0.9942 0.9949 0.9960 0.9954 

Cov(CNN, Dense, Expand) 0.9990 0.9982 0.9981 0.9990 0.9969 0.9955 0.9937 0.9951 0.9969 0.9980 0.9971 
Cer(CNN, Dense) 0.9908 0.9921 0.9826 0.9861 0.9766 0.9753 0.9749 0.9786 0.9723 0.9604 0.9792 

Cer(CNN, Expand) 0.9959 0.9894 0.9884 0.9911 0.9868 0.9865 0.9729 0.9844 0.9867 0.9653 0.9848 
Cer(CNN, Dense, Expand) 0.9908 0.9877 0.9816 0.9842 0.9715 0.9720 0.9708 0.9767 0.9702 0.9584 0.9766 
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in  TABLE II. Since three neural networks achieve good 
prediction accuracy alone, the combination of them does not 
reduce the certainty of accurate prediction so much. 

D. Input data diversity 
As discussed in Section II-C, the output of machine 

learning modules can also be diversified by varying input data. 
We examine the input data diversity by perturbating the test 
sample data and compare the predictions results with the same 
machine learning model. For data perturbation, we apply three 
different operations that are shift, rotate, and adding noise. 
Shift operation moves the digit to left by two pixels. Rotate 
operation rotates the digit by twenty degrees in the clockwise 
direction. Adding noise uses Gaussian-distributed additive  
noise with 0.01 of variance. Figure 5 shows the generated 
samples by these operations from the same sample digit.  

 
Figure 5. Samples generated by shift, rotate and noise adding operations 

For the generated samples, machine learning models are 
required to predict the correct labels as for the original data. 
We use the same CNN model to predict the labels of the 
generated data. TABLE V shows the number of classification 
errors of individual digits by the original and three different 
types of generated data sets. We denote �𝐸𝐸CNN,Y�  as the 
number of prediction errors for the original data (Y=o), shifted 
data (Y=s), rotated data (Y=r) or noise added data (Y=n). 

The classification errors increase in most cases by using 
perturbated data compared with the classification errors 
observed by the original data. Interestingly, however, there 
are some cases that the errors are reduced by adding gaussian 
noise (i.e., for label 5 and 8). Although the numbers of errors 

are increased in the cases with shifted samples and rotated 
samples, their prediction results may contribute to improve 
the coverage of errors. To analyze this by quantifying the 
coverage or errors, we introduce a variant of the coverage of 
errors as defined below. 

Cov(𝑚𝑚,𝒟𝒟) = 1 −
�⋂ 𝐸𝐸𝑚𝑚,𝑗𝑗𝐷𝐷𝑗𝑗∈𝒟𝒟 �

|𝑆𝑆| , 

where 𝒟𝒟 = {𝐷𝐷1,𝐷𝐷2, … } is the set of data set from the same 
original data set, 𝐸𝐸𝑚𝑚,𝑗𝑗  is the error space of the machine 
learning model m for the data set 𝐷𝐷𝑗𝑗 . Since we use CNN in this 
experiment, m=CNN. Similarly, a variant of certainty of 
accurate predictions is defined as 

Cer(𝑚𝑚,𝒟𝒟) = 1 −
�⋃ 𝐸𝐸𝑚𝑚,𝑗𝑗𝐷𝐷𝑗𝑗∈𝒟𝒟 �

|𝑆𝑆| . 

We computed these statistics as shown in TABLE VI. 

 As we can see, the coverage of errors is improved by 
adding the prediction results with the perturbated data 
regardless of the operations used. The total coverage of errors 
reaches 0.9957 by using different prediction results from four 
different data sets. Note that we use the same machine learning 
model generated from the same training data set, but just vary 
the input data for prediction by subtle modifications. Despite 
such a simple treatment which exploiting input data diversity, 
surprisingly we can achieve the complete error coverage for 
label 0 and 3 (See the line of Cov(CNN, {o, s, r, n})). This does 
not directly lead to the improved reliability of the machine 
learning system, since it depends on the way to select the 
correct result from multiple prediction results. The complete 
coverage of errors just guarantees that at least one correct 
prediction results exist in the candidates. We can wisely use 
this capability of error coverage in an architecture design. 

For the certainty of accurate predictions, the values are 
decreased by adding the prediction results in all the cases with 
shifted and rotated data. When four prediction results are 
combined, the certainty decreases down to 0.9027 that is much 
worse than the previous cases. However, with the noise added 
data there are cases that the certainty of accurate predictions 
does not decrease (for label 3 and 8) from the accuracy of 
prediction by CNN with original data which is equal to 
Cov(CNN, {o}). This indicates that the certainty of accurate 
predictions do not always decrease even though the coverage 
of errors increases by noise adding.  

TABLE V. NUMBER OF CLASSIFICATION ERRORS BY CNN WITH PERTURBATED TEST DATA 

Label 0 1 2 3 4 5 6 7 8 9 Total   
�𝐸𝐸CNN,o� 3 6 11 3 5 9 22 11 11 28 109 
�𝐸𝐸CNN,s� 35 85 58 18 20 21 52 18 32 54 393 
�𝐸𝐸CNN,r� 5 47 70 19 105 24 104 147 57 113 691 
�𝐸𝐸CNN,n� 8 8 11 3 6 8 29 17 9 29 128 

 
TABLE VI. ERROR COVERAGES AND CERTAINTY OF PREDICTIONS BY ADDING PREDICTION RESULTS WITH PERTURBATED TEST DATA 

Label 0 1 2 3 4 5 6 7 8 9 Total   
Cov(CNN, {o}) 0.9969 0.9947 0.9893 0.9970 0.9949 0.9899 0.9770 0.9893 0.9887 0.9722 0.9891 

Cov(CNN, {o, s}) 0.9980 0.9956 0.9932 0.9980 0.9969 0.9933 0.9823 0.9942 0.9918 0.9861 0.9930 
Cov(CNN, {o, r}) 0.9990 0.9974 0.9922 1.0000 0.9949 0.9944 0.9802 0.9932 0.9938 0.9782 0.9924 
Cov(CNN, {o, n}) 0.9980 0.9974 0.9922 0.9970 0.9969 0.9910 0.9781 0.9893 0.9918 0.9742 0.9907 

Cov(CNN, {o, s, r, n}) 1.0000 0.9991 0.9981 1.0000 0.9980 0.9955 0.9843 0.9961 0.9959 0.9891 0.9957 
Cer(CNN, {o, s}) 0.9633 0.9242 0.9399 0.9812 0.9776 0.9731 0.9405 0.9776 0.9641 0.9326 0.9568 
Cer(CNN, {o, r}) 0.9929 0.9559 0.9293 0.9782 0.8931 0.9686 0.8883 0.8531 0.9363 0.8821 0.9276 
Cer(CNN, {o, n}) 0.9908 0.9903 0.9864 0.9970 0.9919 0.9899 0.9687 0.9835 0.9877 0.9693 0.9856 

Cer(CNN, {o, s, r, n}) 0.9551 0.8934 0.8934 0.9644 0.8829 0.9552 0.8747 0.8463 0.9158 0.8543 0.9027 
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E. Classification of traffic sign images 
Next, we use Belgian Traffic Sign data set for conducting 

similar experiments to analyze the coverage of errors and the 
certainty of accurate prediction. Since the data set contains 62 
different signs for the classification, we only show the 
prediction results for three specific classes (“Stop”, “No entry” 
and “No stop”) and the total error coverages. TABLE VII, 
VIII and IX, respectively show the results of label predictions 
by different algorithms, neural network architectures and 
perturbated data sets with CNN. For machine learning 
algorithms, neural network architectures, and data 
perturbation operations, we apply the same methods as used 
for MNIST task except for the changes of input data size. 

TABLE VII. ERROR COVERAGES AND CERTAINTIES OF PREDICTIONS OF 
TRAFFIC SIGN IMAGES BY DIFFERENT MACHINE LEARNING MODELS 

Label  Stop No entry  No stop Total 
|𝑆𝑆| 45 61 11 2520 

|𝐸𝐸CNN| 3 0 1 130 
|𝐸𝐸RF| 11 0 3 373 

|𝐸𝐸SVM| 9 0 0 294 
Cov(CNN) 0.9333 1.0000 0.9091 0.9484 

Cov(CNN, RF) 0.9333 1.0000 1.0000 0.9548 
Cov(CNN, SVC) 0.9778 1.0000 1.0000 0.9631 

Cov(CNN, RF, SVC) 0.9778 1.0000 1.0000 0.9659 
Cer(CNN, RF) 0.7556 1.0000 0.6364 0.8456 

Cer(CNN, SVC) 0.7556 1.0000 0.9091 0.8687 
Cer(CNN, RF, SVC) 0.6444 1.0000 0.6364 0.8091 

 
TABLE VIII. ERROR COVERAGES AND CERTAINTIES OF PREDICTIONS OF 

TRAFFIC SIGN IMAGES BY DIFFERENT NEURAL NETWORKS 
Label  Stop No entry  No stop Total 
|𝐸𝐸CNN| 3 0 1 130 

|𝐸𝐸Dense| 0 0 0 247 
�𝐸𝐸Expand� 4 0 0 157 

Cov(CNN) 0.9333 1.0000 0.9091 0.9484 
Cov(CNN, Dense) 1.0000 1.0000 1.0000 0.9579 

Cov(CNN, Expand) 0.9556 1.0000 1.0000 0.9619 
Cov(CNN, Dense, Expand) 1.0000 1.0000 1.0000 0.9746 

Cer(CNN, Dense) 0.9333 1.0000 0.9091 0.8925 
Cer(CNN, Expand) 0.8889 1.0000 0.9091 0.9159 

Cer(CNN, Dense, Expand) 0.8889 1.0000 0.9091 0.8726 
 

TABLE IX. ERROR COVERAGES AND CERTAINTIES OF PREDICTIONS OF 
TRAFFIC SIGN IMAGES BY CNN WITH PERTURBATED TEST DATA 

Label  Stop No entry  No stop Total 
�𝐸𝐸CNN,o� 3 0 1 130 
�𝐸𝐸CNN,s� 13 0 3 605 
�𝐸𝐸CNN,r� 31 0 3 551 
�𝐸𝐸CNN,n� 3 0 1 142 

Cov(CNN, {o}) 0.9333 1.0000 0.9091 0.9484 
Cov(CNN, {o, s}) 0.9333 1.0000 1.0000 0.9567 
Cov(CNN, {o, r}) 0.9333 1.0000 0.9091 0.9595 
Cov(CNN, {o, n}) 0.9333 1.0000 0.9091 0.9496 

Cov(CNN, {o, s, r, n}) 0.9333 1.0000 1.0000 0.9655 
Cer(CNN, {o, s}) 0.7111 1.0000 0.6364 0.7516 
Cer(CNN, {o, r}) 0.3111 1.0000 0.7273 0.7702 
Cer(CNN, {o, n}) 0.9333 1.0000 0.9091 0.9409 

Cer(CNN, {o, s, r, n}) 0.2889 1.0000 0.6364 0.6583 
 

Overall, we observe that the total error coverages are 
improved by diverse algorithms, neural network architectures 
and perturbated input data sets. The achieved total error 
coverages are 0.9659, 0.9746, and 0.9655, respectively, while 
the error coverage achieved only by CNN is 0.9484. As shown 
in the line of Cov(CNN, Dense, Expand) in TABLE VIII, the 
combination of three neural networks achieves the complete 

coverages for classification of “Stop”, “No entry” and “No 
stop”.  

In traffic sign recognitions, accurate detections of “Stop” 
sign and “No entry” sign are particularly important for safety 
purpose in consideration with autonomous driving system. 
Neglecting these signs may cause a serious traffic accident. 
For “No entry” sign, it is relatively easy to recognize as all the 
machine learning models do not have classification errors 
even by perturbated data. While the classification of “Stop” 
sign encounters some errors, the coverage of errors can be 
improved by using the different machine learning models. It 
can be noted that the classification errors of “Stop” sign are 
fully covered by using the different neural network 
architectures (in particular by adding the prediction results of 
Dense network) (See TABLE VIII). Figure 6 visualizes the 
overlaps of error spaces for classification of “Stop” sign 
images by the different neural network architectures. 

 
Figure 6. Error spaces of three neural networks for classification of traffic 

sign images labeled “Stop” 

Interestingly, for this specific task, Dense network 
contributes to increase the coverage of errors against the 
results from other neural networks, while it does not 
contribute at all for the classification of zero in the MNIST 
test data as seen in Figure 4. The results also can be attributed 
to the power of diversity. 

On the other side, the certainties of accurate predictions 
are significantly decreased by adding different prediction 
results. In particular for “Stop” sign classification, the 
certainty decreases down to 0.2889 by combining four 
prediction results from perturbated test data sets (See the line  
Cer(CNN, {o, s, r, n}) in TABLE IX), even though there is no 
improvement in the coverage. Therefore it is not a good option 
to employ the input data diversity in such a particular case. 
Since the decreases in the certainties of accurate predictions 
by three different neural networks are relatively acceptable, 
choosing this option could benefit the reliability of the system 
using traffic sign recognitions. 

IV. SYSTEM RELIABILITY MODEL AND ANALYSIS 
In this section, based on the experimental observations, we 

analytically investigate how the diversity of machine learning 
modules can be leveraged for designing a reliable software 
system. Since earlier studies on software fault-tolerance 
techniques presented the reliability models for N-version 
programming as well, we start from the reviews of the general 
reliability model and then present our model that incorporates 
the diversity parameter in terms of error spaces. In the 
following analysis, we focus on the three-version architecture. 
The system reliability is regarded as the probability that the 
system output is correct in terms of input data from the real 
world application context. Note that the accuracy of a machine 
learning model on the test data set only gives an empirical 

𝐸𝐸CNN

𝐸𝐸Expand

𝐸𝐸Dense
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estimate of the module reliability and is not equal to the 
system reliability discussed in the following. 

A. Reliability model for N-version system 
One of the common methods to determine the output of 

N-version architecture is to take the majority vote of outputs 
from N components. The traditional model defines 𝑅𝑅𝑖𝑖 as the 
reliability of component i’s output and assumes each 
component may output an error independently. The system 
reliability by majority voting from N outputs can be given by 

𝑅𝑅𝑁𝑁𝑁𝑁(𝑁𝑁) = 1 − � � �𝑅𝑅𝑖𝑖1−𝑘𝑘𝑖𝑖 ∙ (1 − 𝑅𝑅𝑖𝑖)𝑘𝑘𝑖𝑖
𝑁𝑁

𝑖𝑖=1 ∑ 𝑘𝑘𝑖𝑖𝑁𝑁
𝑖𝑖=1 =𝑘𝑘,
𝑘𝑘𝑖𝑖={0,1}

𝑁𝑁

𝑘𝑘=�𝑁𝑁2�+1

. 

For N=3, we have 
𝑅𝑅𝑁𝑁𝑁𝑁(3) = 𝑅𝑅1𝑅𝑅2 + 𝑅𝑅1𝑅𝑅3 + 𝑅𝑅2𝑅𝑅3 − 2𝑅𝑅1𝑅𝑅2𝑅𝑅3. (1) 

When each component reliability is equivalent to R, the 
reliability expression can be simplified as 

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁) = � �𝑁𝑁𝑘𝑘� ∙ 𝑅𝑅
𝑘𝑘 ∙ (1 − 𝑅𝑅)𝑁𝑁−𝑘𝑘

𝑁𝑁

𝑘𝑘=�𝑁𝑁2�+1

. 

When N=3, it becomes the reliability of triple module 
redundancy (TMR) system that is given by 3𝑅𝑅2 − 2𝑅𝑅3. It is 
well known that the reliability of TMR system is inferior to 
the component reliability when R<1/2 [19]. 

Desirable N-version programming system implicitly 
assumes or expects that individual versions are independent of 
each other and hence common error is regarded as a rare case. 
However, empirical studies showed that errors of software 
versions largely correlated and they are not independent even 
implemented by different teams [20][21]. Earlier analytical 
studies also show that independently developed versions can 
encounter coincident failures which results in decreased 
software reliability [22][23]. To incorporate the factor of 
dependent failure, the dependent failure parameter 𝛼𝛼  was 
introduced that represents the similarity percentage of the 
input sets on which each pair of versions fail [24]. The 
reliability of an N-version programming system can be 
expressed as 

 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼,𝑁𝑁) = 1 − {𝑛𝑛𝛼𝛼𝑛𝑛−2𝑅𝑅(1 − 𝛼𝛼) + 𝛼𝛼𝑛𝑛−1𝑅𝑅}. 

Note that the above model also assumes that the reliabilities 
of individual components are equal to R. For N=3, we have 

𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼, 3) = 1 − 𝛼𝛼(3 − 2𝛼𝛼)(1 − 𝑅𝑅). (2) 

The above models can be used for computing an estimate 
of reliability of an N-version machine learning system. 
However, the diversity of machine learning modules 
observed in our experiments cannot be directly applied to 
these existing models, which may cause under- or over-
estimate of the reliability. Therefore, we introduce the 
reliability model for an N-version machine learning system 
that incorporates the measures of diversity.  

B. Reliability of three-version architecture with diversity 
measure 
Considering the diversity-affected metric used in the 

experiments, we introduce the measure of diversity defined 
by the intersection of error spaces 

𝛼𝛼𝐼𝐼 ∶=
|⋂ ℰ𝑖𝑖𝑖𝑖∈𝐼𝐼 |

|𝒮𝒮| , 

where ℰ𝑖𝑖  represents the error space of machine learning 
module 𝑚𝑚𝑖𝑖 from the total sample space 𝒮𝒮. In contrast to the 
dependent failure parameter 𝛼𝛼  introduced by [24], the 
measure is defined on the set 𝐼𝐼  and the values will change 
depending on the members of set 𝐼𝐼. The reliability of three 
version architecture using machine learning modules 𝑚𝑚1,𝑚𝑚2 
and 𝑚𝑚3 can be expressed as follows.  

𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) = 

1 −
|ℰ1 ∩ ℰ2| + |ℰ1 ∩ ℰ3| + |ℰ2 ∩ ℰ3| − 2|ℰ1 ∩ ℰ2 ∩ ℰ3|

|𝒮𝒮| . 

Using the diversity measure, we can rewrite the reliability as 

𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) = 
1 − �𝛼𝛼{1,2} + 𝛼𝛼{1,3} + 𝛼𝛼{2,3} − 2𝛼𝛼{1,2,3}�. (3) 

Although the true values of 𝛼𝛼𝐼𝐼  are not known, empirical 
estimates of the diversity measures can be computed from the 
observed error spaces 𝐸𝐸𝑖𝑖 for a specific sample space S by  

𝛼𝛼𝐼𝐼� =
|⋂ 𝐸𝐸𝑖𝑖𝑖𝑖∈𝐼𝐼 |

|𝑆𝑆| = 1 − Cov(𝐼𝐼). 

Using the empirical estimates, the system reliability of 
three version machine learning architectures with 
(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) = (CNN, RF, SVM)  for MNIST test samples 
can be computed as shown in TABLE X. We also show the 
computed system reliability by traditional reliability model 
𝑅𝑅𝑁𝑁𝑁𝑁(3) from expression (1) and the reliability of TMR with 
the averaged component reliability (i.e., (𝑅𝑅CNN + 𝑅𝑅RF +
𝑅𝑅SVM)/3), and the reliability model using dependent failure 
parameter by expression (2) where we set 𝛼𝛼 = 𝛼𝛼�{CNN,RF}. 

TABLE X. ESTIMATED SYSTEM RELIABILITY WITH EMPIRICAL 
DIVERSITY 

Module reliability 𝑅𝑅CNN 0.9891 
 𝑅𝑅RF 0.9707 
 𝑅𝑅SVM 0.9704 

Empirical diversity 𝛼𝛼�{CNN,RF} 0.7523 
 𝛼𝛼�{CNN,SVM} 0.6697 
 𝛼𝛼�{RF,SVM} 0.5802 
 𝛼𝛼�{CNN,RF,SVM} 0.6055 

System reliability 𝑅𝑅3𝑉𝑉𝑉𝑉(CNN, RF, SVM) 0.9807 
 𝑅𝑅𝑁𝑁𝑁𝑁(3) 0.9985 
 TMR 0.9984 
 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝛼𝛼�{CNN,RF}, 3� 0.9738 

The system reliability of three-version architecture is 
actually smaller than the best reliability by the module using 
CNN (i.e., 𝑅𝑅3𝑉𝑉𝑉𝑉(CNN, RF, SVM) < 𝑅𝑅CNN ). Although the 
coverage of errors is increased by diverse models, the majority 
voting often neglects the correct minority that results in 
decreased reliability. Nevertheless, since the reliability of 
three-version system is close to the reliability achieved by the 
best machine learning module, it is worth taking N-version 
architecture especially when there is less knowledge about 
which machine learning module achieves the best (e.g., using 
common models in a new application environment).  

From TABLE X, we can also observe that the traditional 
reliability model 𝑅𝑅𝑁𝑁𝑁𝑁(3) and TMR model overestimate the 
reliability of three-version architecture, since the assumption 
of independence of different version is not true. It is important 
to estimate the intersection of error spaces and include it in the 
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reliability model. Meanwhile, the reliability model 
𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁�𝛼𝛼�{CNN,RF}, 3�  underestimates the reliability. This is 
caused by the simplified assumption that all the component 
reliabilities are equal to R and dependent failure parameters 
are equal to 𝛼𝛼 for any pairs of modules. Our reliability model 
(3) can represent the system reliability more precisely. 

C. A necessary condition for reliability improvement 
Our experimental results indicate that the three-version 

architecture may not effectively improve the system reliability 
under a majority voting configuration. In order to analyze the 
condition where the three-version architecture achieves a 
better reliability,  we compare 𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3)  with the 
reliability of a single machine learning model. Assume 𝑚𝑚1 is 
the model achieves the highest reliability among the other 
models. The condition where the three-version architecture 
achieves a better reliability than any single component is given 
by 𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) − 𝑅𝑅1 > 0. Since 𝑅𝑅1 is defined by 1 −
|ℰ1| |𝒮𝒮|⁄ , the condition is 
𝑅𝑅3𝑉𝑉𝑉𝑉(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) − 𝑅𝑅1 

=
|ℰ1| − {|ℰ1 ∩ ℰ2| + |ℰ1 ∩ ℰ3| + |ℰ2 ∩ ℰ3| − 2|ℰ1 ∩ ℰ2 ∩ ℰ3|}

|𝒮𝒮|  

=
1

|𝒮𝒮| �
(|ℰ1| − |ℰ1 ∩ ℰ2| − |ℰ1 ∩ ℰ3| + |ℰ1 ∩ ℰ2 ∩ ℰ3|)

−(|ℰ2 ∩ ℰ3| − |ℰ1 ∩ ℰ2 ∩ ℰ3|) � 

=
1

|𝒮𝒮| {|ℰ1 ∩ ℰ2��� ∩ ℰ3���| − |ℰ1��� ∩ ℰ2 ∩ ℰ3|} > 0, 

where ℰ𝚤𝚤�  represents the complementary set of ℰ𝑖𝑖. As a result, 
we obtain the following necessary condition for reliability 
improvement over the intersections of error spaces. 

|ℰ1 ∩ ℰ2��� ∩ ℰ3���| − |ℰ1��� ∩ ℰ2 ∩ ℰ3| > 0 (4) 

Although the true values of the terms in the above 
condition are not obtainable, we can empirically count the 
numbers of samples for individual terms through experiments 
with a test data set. When the number of samples in 𝐸𝐸1 ∩ 𝐸𝐸2��� ∩
𝐸𝐸3��� is larger than that in 𝐸𝐸1��� ∩ 𝐸𝐸2 ∩ 𝐸𝐸3 for a given sample space 
S, it is likely that three three-version architecture is effective. 

D. A system design guide 
From our findings through the experiments and reliability 

analysis, we summarize the guides for engineering reliable 
systems using diverse versions of machine learning modules. 

• Exploiting input diversity 
Among several approaches to diversifying the outputs of 
machine learning models, the approach using perturbated 
input data can be easily introduced because it does not need 
to prepare multiple machine learning models. If the 
coverage of errors increases by perturbated input data 
through experiments, it is worth considering to take a multi-
version architecture for improving system reliability. 

• Using multi-version models for error detection 
As we observed in the experiments, different machine 
learning models have quite different error coverages. One 
of the direct applications of this property is using multi-
version models for an error detection function. If any 
disagreement occurs among the multiple prediction results 
from different modules, there must be a prediction error. In 
this case, we can discard the prediction results to avoid 

undesirable consequence to the system and/or issue alert to 
higher level component. 

• Estimating carefully the effectiveness of three-version 
architecture with majority voting  

When employing an N-version architecture using three-
version machine learning modules and majority voting, it is 
encouraged to carefully assess the reliability improvement 
using our reliability model. From a test data set, we can 
compute the sizes of error spaces 𝐸𝐸1 ∩ 𝐸𝐸2��� ∩ 𝐸𝐸3��� and 𝐸𝐸1��� ∩
𝐸𝐸2 ∩ 𝐸𝐸3 empirically. Comparing these sizes with respect to 
the necessary condition (4), we can have a guide to decide 
whether three-version machine learning models can be 
effectively used under the majority voting or not. 

V. RELATED WORK 
Multi-version machine learning approaches have been 

studied in different contexts and purposes; i) for generating a 
better machine learning model in terms of accuracy, ii) for 
testing an implementation of machine learning algorithm, and 
iii) for improving the reliability of the system using machine 
learning models. Our work focused on characterizing the 
diversity of error outputs of different machine learning 
models and are closely related to these related studies as 
discussed below. 

First, to obtain a well performed supervised machine 
learning model, ensemble learning [24] is a commonly 
adopted technique in which multiple models are combined to 
improve the prediction accuracy. Random forest [14] is also 
known as an ensemble learning method that generates 
multiple decision trees by random sampling from training 
data set. While empirically ensemble learning methods often 
yield a better result, theoretically there is no guarantee for 
improved accuracy. The improved accuracy by ensemble can 
be attributed by the diversity of machine learning models. 
The relationship between several diversity measures and 
empirical prediction accuracy was extensively studied [26]. 
A variety of diversification methods for machine learning 
processes and the applications of the diversity technology are 
surveyed [27]. While our work also looks into the diversity in 
terms of the coverage of errors attained by machine learning 
models, our focus is not on learning process itself. Our 
objective is to leverage the diversity to improve the system 
reliability, and thus we present the reliability model that 
connects the empirical diversity measure and the system 
reliability achieved by three-version architecture.  

Second, a multi-version machine learning approach is 
used for testing implementations of machine learning 
algorithms. Ensuring the quality of the products or services 
using machine learning is a challenging issue since in practice 
there is no complete oracle that can guarantee the expected 
prediction results for new input. The problem “no oracle” in 
testing machine learning models has been discussed [28] and 
a metamorphic testing approach was presented. A multi-
version machine learning approach is recently introduced  
[29]. To test the output of a machine learning model, an 
alternative version of machine learning model is used for 
creating a proxy oracle. The approach can effectively find the 
implementation faults of machine learning algorithm. While 
this work uses the multi-version approach in a testing phase 
to improve a single machine learning model, our study 
considers the architecture of machine learning system using 
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multiple models. Multi-version approaches can be used both 
in testing and architecture design phases. 

Third, some recent studies attempt to apply N-version 
programming approach to machine learning systems 
considering the system level reliability. A recent study 
presented the architecture using three redundant deep neural 
networks with weighted majority voting for predicting 
steering angle of autonomous vehicle [30]. Preliminary results 
showed the improved reliability by N-version architecture. 
Our experimental results with multiple neural network 
architectures, however, did not improve the reliability.  This 
is probably caused by the difference of voting mechanism 
used. An N-version approach using multiple deep neural 
networks is also studied by NV-DNN [31]. While the different 
training process, network architectures and training data sets 
are examined, the diversification approach by perturbated 
input data has not been studied. Although a recent theoretical 
study analyzes the potential reliability enhancement by using 
different input data for prediction [32], our work first 
experimentally shows that the coverages of errors are 
improved by using varied input data. Moreover, our study 
clarifies the condition where three-version machine learning 
architecture achieves better system reliability than the best 
machine learning module, which has not been presented in the 
previous literature for N-version machine learning systems. 

VI. CONCLUSION 
In this paper, we have experimentally evaluated the 

diversity of machine learning models for image classification 
tasks toward designing a reliable machine learning system. 
The impact of diversity is quantified by the coverage of errors 
defined as the ratio of the samples that are not correctly 
predicted by a given set of machine learning models. We also 
quantified the certainty of accurate prediction that has a trade-
off relationship with the coverage of errors. Our experimental 
results show that the coverages of errors are increased by 
using different machine learning algorithms, different neural 
network architectures and perturbated input data, while the 
certainties of predictions are decreased in most cases. With 
this observation, we presented the reliability model for three-
version machine learning architecture that takes into account 
the intersections of error spaces of machine learning models. 
The presented reliability model is used to characterize the 
necessary condition under which the three-version 
architecture achieves a higher reliability than the reliability of 
the best module. While this paper focuses on three-version 
architecture, generalization of the reliability model for N-
version architecture will be discussed in the future work. 
Since our experimental results are limited to image 
classification tasks, extending the study for other fields like 
voice recognition and natural language processing is also an 
important future work. 
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