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Abstract—The N-Version Machine Learning (NVML) system
is an approach to improving the reliability of system outputs
by employing several different machine learning models in the
same system. Voting mechanisms are crucial in NVML systems,
influencing the final decision-making process. This paper inves-
tigates voting mechanisms for the NVML system by introducing
a safety metric based on the Failure Modes and Effects Analysis
(FMEA) method. Safety-related weights are assigned to machine
learning models in the NVML system to implement weighted
voting and weighted soft voting mechanisms. As a case study,
we investigate a traffic sign recognition system. Through the
FMEA analysis, we categorize the misclassifications of traffic
signs based on their severity. The safety metric is defined by the
severity with the misclassification probability estimated from the
test results and is used for assigning weights to machine learning
models. Our experimental results on a real traffic sign dataset
show the advantage of safety-aware weighted soft voting in all
safety evaluation metrics. Moreover, we use a Large Language
Model (LLM) to generate the weights for the voting mechanisms.
However, the preliminary results show that the LLM-based
approach yields a suboptimal solution compared to our weight
assignment method.

Index Terms—system safety, machine learning, N-version pro-
gramming, autonomous vehicle

I. INTRODUCTION

In recent years, Machine Learning (ML) technologies have
been widely deployed in safety-critical applications like au-
tonomous vehicles. Computer Vision (CV) systems powered
by ML algorithms are becoming essential components of
autonomous vehicles [1]. Most state-of-the-art CV systems are
constructed based on unexplainable black-box ML models like
deep neural networks. Therefore, the reliability of CV systems
remains a challenge. As uncertain or mispredicted outputs
of ML models may cause serious accidents in safety-critical
systems, there is an urgent need for methods to improve the
reliability of ML systems.

The N-version Machine Learning (NVML) system leverages
the traditional N-version programming technique by using
multiple different ML models in the same system to improve
the reliability of the system output [2]. Recent studies have
demonstrated reliability improvements by the NVML architec-
ture in image classification tasks [3] and steering control tasks
[4]. During the operation of an NVML system, different ML
models may output different predictions. To determine reliable
system outputs from multiple prediction results, the NVML

system needs a prudent voting mechanism. For instance, in
a three-version ML image classification system, three ML
models give three independent predictions, and the final output
is determined by majority voting [5].

However, the majority voting mechanism has limitations.
One significant drawback is its inability to provide an output
when each model makes a completely different prediction,
leading to a tie with no clear majority. For instance, if the three
models predict classes A, B, and C, the majority voting system
fails to determine a definitive outcome. Additionally, for cases
that are prone to misclassification, relying solely on majority
voting might not yield the best result. Instead, it may be more
advantageous to consider the prediction from the model with
the highest historical accuracy, as it is more likely to deliver
a correct result for difficult-to-classify instances.

To address these challenges, we investigate more fine-
grained voting mechanisms for NVML systems for safety-
critical applications. Our exploration includes various voting
mechanisms based on NVML image classification systems,
such as majority voting, weighted voting, soft voting, and
weighted soft voting. In this study, we particularly focus
on the weighted soft voting mechanism, as it utilizes the
confidence levels of the models’ predictions and assigns ap-
propriate weights to each model. This approach allows the
system to account for both the confidence and reliability of
different models, integrating nuanced information to achieve
potentially more accurate and reliable outputs in safety-critical
applications.

To determine safety-aware weights in a safety-critical ap-
plication context, we develop a metric to assess the safety of
an ML-based traffic sign recognition system for autonomous
vehicles. We employ the Failure Mode and Effects Analysis
(FMEA) method to systematically analyze potential failures
that could occur due to errors in the traffic sign recognition
system during autonomous vehicle operation. By identifying
and evaluating these potential failure modes, we assign risk
scores based on their severity and likelihood. These risk scores
inform the assignment of safety-aware weights to the models,
ensuring that models with lower associated risks have a greater
influence on the system’s final output.

The effectiveness of various voting mechanisms, including
weighted soft voting, is evaluated through experiments using a
traffic sign recognition system composed of three distinct ML



models: AlexNet, VGG16, and EfficientNetB0. We measure
the performance of the system with metrics such as accuracy,
safety score, and the count of high-severity misclassifications.
These metrics are used to compare the effectiveness of differ-
ent voting mechanisms. The results show that our proposed
weighted soft voting method not only enhances accuracy but
also significantly improves the safety and reliability of the
NVML system by reducing the number of severe misclassifi-
cation instances.

Moreover, we introduced LLM-based weight assignment
approach in which weights are generated by ChatGPT. We ask
ChatGPT to assign the weight for each model based on the
severity matrix and misclassification probabilities. However,
our preliminary evaluation results show that the LLM-based
weight assignment generates a suboptimal solution, suggesting
needs for more specialized LLM and/or better prompt engi-
neering.

Our contributions can be summarized as follows:
• We introduce a safety-aware weighted soft voting mech-

anism for NVML systems.
• We develop a safety metric based on the FMEA method

to evaluate and improve the safety of ML-based traffic
sign recognition systems.

• We demonstrate the effectiveness of the proposed safety-
aware weighted voting mechanism through the experi-
ments using a real traffic sign dataset.

• We examine the potential LLM-based approach for
weight assignment.

The rest of the paper is organized as follows: Section
II reviews related work. Section III provides background
information on the traffic sign recognition and FMEA ap-
proach. Section IV describes the proposed voting mechanisms.
Section V presents our safety metric. Section VI presents the
experimental setup and results, and Section VII concludes the
paper.

II. RELATED WORK

Recent studies have explored multi-version ML approaches
to improve ML system reliability. Xu et al. investigated the
feasibility of developing fault-tolerant deep learning systems
through model redundancy (i.e., NV-DNN [3]). They proposed
several independent factors that can be used to generate
multiple versions of neural network models, including train-
ing, network, and training data. Experimental results validate
that their approach can improve the fault tolerance of deep
learning systems. NV-DNN assumes that a single input is
processed at one time, while N-version ML can use different
inputs to leverage input diversity. Makino et al. [6] developed
queueing models for multi-model multi-input ML systems to
examine the performance of multi-version ML systems. Their
research focuses on the throughput of straightforward two-
version architectures, where the system can employ up to
two different ML models and two data sources. Wen et al.
[5], [7] conducted numerical and empirical analysis on the
impact of using diverse models and varied inputs to enhance
the reliability of three-version ML systems. Hong et al. [8]

introduced a multimodal deep learning method that enhances
the classification accuracy of remote-sensing imagery, surpass-
ing the performance of both single-model or single-modality
approaches.

Various voting schemes have been considered in multi-
version ML approaches. Singamsetty et al. [9] examined
existing weighted average voting algorithms used in safety-
critical systems and introduced a history-based weighted
voting algorithm with a soft dynamic threshold. Karimi et
al. [10] introduced a voting algorithm for real-time fault-
tolerant control systems, especially for large N. The algorithm
overcomes the limitations of algorithms like median and
weighted voting, significantly enhancing system reliability and
availability. Wu et al. [4] developed a weighted N-version
programming scheme for ensuring the resilience of ML-based
steering control algorithms. The design of the scheme is based
on the fusion of three redundant DNN model outputs. They
proposed a weighted voting scheme based on the steering
angle RMSE performance. However, in this study, we consider
the severity of misclassification and explore how safety-aware
weight voting affects the performance of NVML traffic sign
classification systems.

Existing studies have investigated safety-aware strategies
to enhance the reliability and safety of systems in critical
applications. Zhao et al. [11] analyzed safety-aware computing
system design in autonomous vehicles. They proposed a safety
score metric to better assess safety beyond traditional per-
formance metrics and introduced a perception latency model
to estimate safety scores and demonstrate its application in
managing hardware resources for enhanced safety in AV
computing systems. Rahman et al. [12] investigated how the
transient hardware faults contribute to the misclassification of
DNN models based on safety-critical metrics compared to by
intrinsic algorithmic inaccuracy. In this work, we introduce
the safety-aware weighted voting N-version traffic sign recog-
nition system to improve the safety of ML-based systems for
autonomous vehicles.

III. BACKGROUND

A. Traffic Sign Recognition

Traffic sign recognition is a crucial component of au-
tonomous vehicles. It enables vehicles to recognize and re-
spond to traffic signs such as speed limits, warnings, and prohi-
bitions, ensuring adherence to road regulations and enhancing
driving safety. These systems typically use ML algorithms to
process visual data captured by cameras mounted on vehicles,
allowing them to recognize traffic signs in real-time.

Accurate recognition of traffic signs is essential for safe
navigation and compliance with traffic laws. Misclassifica-
tion of traffic signs can potentially lead to accidents. For
instance, misclassifying a ”Speed Limit 20” sign as a ”Speed
Limit 70” sign (see Fig. 1a) can result in dangerously high
speeds. In contrast, some misclassifications are relatively safe.
For example, misclassifying a ”School Crossing” sign as a
”Cycles Crossing” sign (see Fig. 1b) typically does not pose
a significant safety threat, as both indicate caution. These



(a) (b)

Fig. 1: Misclassifications of traffic signs: (a) Speed Limit 20
sign misclassified as Speed Limit 70 (unsafe misclassification
example) and (b) School Crossing sign misclassified as Cycles
Crossing (safe misclassification example)

examples underscore the importance of high safety in traffic
sign recognition systems, particularly in safety-critical con-
texts. Our experiments with models like AlexNet demonstrate
both critical and non-critical misclassifications, highlighting
the need to improve the reliability and safety of traffic sign
recognition in autonomous vehicles.

B. Failure Modes and Effects Analysis

FMEA is a systematic approach used to identify potential
failure modes within a system and assess their potential effects
[13]. It is widely utilized across various industries, including
engineering, manufacturing, and healthcare, to prioritize and
mitigate risks associated with system failures before they
occur.

In this study, we focus on enhancing the safety of ML-
based CV systems in autonomous vehicles. These systems
must accurately detect and recognize objects such as vehicles,
pedestrians, traffic lights, and traffic signs to ensure safe driv-
ing. Our research specifically targets traffic sign recognition
systems, which are crucial for maintaining road safety.

We employ FMEA to evaluate the safety risks associated
with the misclassification of traffic signs in different driving
contexts. For example, if an autonomous vehicle misrecog-
nizes a 60 km/h speed limit sign as 120 km/h, it could
result in serious accidents due to excessive speeding. FMEA
enables us to systematically assess these risks and prioritize
improvements to the recognition system.

The FMEA process involves the following steps:
1) FMEA Worksheet Creation: The first step is to create a

worksheet that lists all the functions of the analysis objects,
along with their potential failures and the effects these failures
might cause.

2) Effects Analysis: Next, we determine the Probability
(P ), Severity (S), and Detection (D) levels for each potential
failure:

• Probability (P ): The likelihood of a failure occurring.
• Severity (S): The impact or consequences of the failure.
• Detection (D): The ability to detect the failure before it

occurs.
In our study, the traffic sign recognition system in au-

tonomous vehicles makes real-time predictions based on im-
ages captured by onboard cameras. Therefore, we do not
consider the detection factor in this paper.

3) Risk Levels Calculation: Finally, we calculate the Risk
level (R = P × S), which helps us identify which failures
have the highest priority for remediation. This prioritization
enables us to address the most critical issues first and enhance
the overall safety of the traffic sign recognition system.

IV. VOTING MECHANISMS

In the NVML system, there is a decision module that
aggregates the outputs from various ML models and deter-
mine the final system output. This system integrates multiple
image classification models. Typically, a multi-category image
classification model provides a single category label with the
highest probability. However, in NVML systems, the output
of each ML model is not directly used as the final system
output. Instead, the output of the softmax layer can be utilized
as the ML model output, which allows for a more nuanced and
probabilistic representation of the classifications.

We explain several voting mechanisms that can be consid-
ered for the NVML image classification system. Based on
the different forms of the ML model outputs, we divide the
decision-making mechanisms into two kinds: hard voting and
soft voting.

A. Hard Voting

In hard voting, suppose we are given a set of T individual
ML models {h1, h2, · · · , hT } and a set of l possible class
labels {c1, c2, · · · , cl}. It is generally assumed that for an input
x, the output of model hi is given as an l-dimensional vector

hi(x) =
(
h1
i (x), h

2
i (x), · · · , hl

i(x)
)T

where hj
i (x) ∈ {0, 1}. In hi(x), only one element hj

i (x) = 1,
indicating that the model hi predicts the input x as the class
label cj . All other elements hk

i (x) for k ̸= j will be 0. In
hard voting, we have two types: majority / plurality voting
and weighted voting.

1) Majority / Plurality Voting: In majority or plurality
voting, each ML model votes for one class, and the final
output is the class that receives the most votes. Majority
voting requires that the received votes be more than half.
For example, if the output class labels of 5 ML models are
(1, 1, 2, 3, 4), it is rejected by majority voting while label 1 is
chosen by plurality voting. The final output of majority voting
is given by:

Hm(x) =

cj if

T∑
i=1

hj
i (x) >

1

2

l∑
k=1

T∑
i=1

hk
i (x),

rejection otherwise.

(1)

On the other hand, the final output of plurality voting is
given by:

Hp(x) = ck, k = argmax
j

T∑
i=1

hj
i (x). (2)

Plurality voting performs the same as majority voting when
the number of models is less than or equal to three. However,



majority voting alone cannot handle all situations, such as
when the output class labels are (1, 2, 3) in a 3-version
system and (1, 1, 2, 2, 3) in a 5-version system. In these cases,
additional parameters are required for decision-making. In the
later sections, we construct a 3-version ML system for the
experiment, so we will only discuss majority voting.

Majority and plurality voting schemes are easy to under-
stand and implement. However, since these voting schemes do
not consider the differences among voters, minority voters tend
to be neglected. Moreover, plurality voting does not require a
majority (more than 50%) which can lead to an output that is
not widely agreed upon.

2) Weighted Voting: The weight voting assigns a weight to
each ML model. The final output is the class that receives the
most votes. The final output of weighted voting is given by:

Hw(x) = ck, k = argmax
j

T∑
i=1

wih
j
i (x), (3)

where wi is the weight assigned to the model hi. The
weights are normalized and constrained by wi > 0 and∑T

i=1 wi = 1.
The weighted voting can consider varying levels of impor-

tance among voters. However, determining appropriate weights
is not straightforward and can be error-prone. Additionally, the
weighted voting can lead to certain voters having dispropor-
tionate influence, depending on the assigned weights.

B. Soft Voting

In soft voting, suppose we are given a set of T individual
ML models {g1, g2, · · · , gT } and a set of l possible class labels
{c1, c2, · · · , cl}. It is generally assumed that for an input x,
the output of model gi is given as an l-dimensional vector

gi(x) =
(
g1i (x), g

2
i (x), · · · , gli(x)

)T
where gji (x) ∈ [0, 1], which can be regarded as an estimate of
the posterior probability of the input x belonging to class cj .

1) Simple Soft Voting: Simple soft voting involves summing
the outputs of all the ML models to calculate the final
probability output for making the final prediction. This method
is used in [3]. The final output of simple soft voting is given
by:

Gs(x) = ck, k = argmax
j

T∑
i=1

gji (x). (4)

The simple soft voting can incorporate the uncertainty or
ambiguity of voters. Instead of using class labels, this scheme
utilizes the prediction probabilities for all categories. However,
the probability scores predicted by the model do not always
positively correlate with the confidence level. Incorrect outputs
may have high probabilities, while correct outputs may have
low probabilities.

2) Weighted Soft Voting: In weighted soft voting, different
weights are assigned to ML models to calculate the final
output. Weighted soft voting is used in [4]. The final output
of weighted soft voting is given by:

Gw(x) = ck, k = argmax
j

T∑
i=1

wig
j
i (x), (5)

where wi is the weight assigned to the model gi. The
weighted soft voting combines the benefits of weighted voting
and simple soft voting, incorporating varying voter weights
and degrees of certainty in the votes. However, like weighted
voting, the determination of weights might be complex.

C. Issue of weight assignment

Considering the advantages and disadvantages of the voting
mechanisms, we employ the weighted soft voting in our study.
This scheme combines the benefits of weighted voting, which
considers different voter influences, and soft voting, which
accounts for the level of certainty in the votes. However, there
is no standard method for defining the weights. This motivates
us to investigate how to assign relevant weights to different
ML models to improve the safety of the system. To this end,
we consider a safety metric that can be used for evaluating
system safety and assigning weights to ML models in an
NVML system.

V. SAFETY METRIC

This section considers a safety metric for CV systems used
in autonomous vehicles, specifically focusing on traffic sign
recognition. We aim to use this safety metric to assign weights
for weighted soft voting in an NVML system. To evaluate the
safety of an autonomous vehicle, we first conduct a FMEA
worksheet to enumerate the errors of the traffic sign recog-
nition systems. We tabulate the different misclassifications in
traffic sign recognition and determine their severity. Next, we
estimate the probability of occurrence of various errors through
experiments on the test dataset and calculate the risk score of
the traffic sign recognition system.

A. FMEA worksheet

First, we conduct FMEA to analyze the failures caused
by a traffic sign recognition system during the movement of
autonomous vehicles. With the help of FMEA, we can create
an FMEA worksheet in TABLE I that lists all the failure modes
that can occur with the traffic sign recognition system and then
derive the reasons why each error occurs and the consequences
that are induced.

B. Effects Analysis

This paper analyzes the effect of failure mode No.1, mis-
classifying a traffic sign from class A to class B. The effect
of this misclassification depends on the ground truth class and
the predicted class. First, we determine the severity of the
failure mode, and then we present the statistical method for
determining the probability.



TABLE I: FMEA Worksheet for Traffic Sign Recognition System

Item Num. Failure Mode Cause Effect

Traffic Sign
Recognition
System

1 Misclassify a traffic sign
from category A to B

Error in the ML algorithm; insufficient
training data; ambiguous traffic sign

Misrecognition of traffic signs potentially leads to in-
appropriate vehicle actions such as sudden braking or
accelerating depending on categories A and B.

2 No output Error in the ML algorithm; software
crash

The vehicle may fail to respond to critical traffic signs,
leading to unsafe driving depending on the unrecognized
category.

3 Real-time delay High computational load; inefficient
algorithms; hardware limitations

Delayed vehicle response to traffic signs increase the risk
of accidents like rear-end collisions due to slower reaction
times.

4 Hardware failure Sensor malfunction; power issues;
physical damage

Loss of input data or system disablement results in the in-
ability to recognize traffic signs, affecting vehicle response.

5 Security attacks Cyber attacks; unauthorized access;
data tampering

Manipulation or obstruction of traffic sign data leads to
incorrect system outputs and unsafe vehicle actions.

6 Adversarial sample mis-
classification

Intentionally crafted inputs designed to
deceive the ML model

Incorrect traffic sign recognition causes the vehicle to
perform unsafe actions based on false information.

7 No input Camera obstruction; disconnection;
environmental factors (e.g., fog)

Inability to recognize traffic signs leads to unresponsive
vehicle actions.

8 Wake-up signal delay
Sensor malfunction; bandwidth limi-
tations; error in the vehicle system;
prioritization issues

Delay in waking up the system results in the vehicle
ignoring critical traffic signs.

TABLE II: An example of severity levels for traffic sign
classification

Ground Truth Prediction
Speed

limit 60
Speed

limit 120 Stop Danger Go right

Speed limit 60 - 2 2 1 1
Speed limit 120 2 - 2 1 1

Stop 2 2 - 0 0
Danger 1 1 0 - 0

Go right 0 0 0 0 -

1) Severity: Considering various misclassification condi-
tions between the predicted class and the ground truth, we de-
fine the severity levels of this failure mode in a severity matrix.
The severity level ranges from 0 to 2. Level 0 indicates that the
misclassification poses no danger at all (e.g., misclassifying a
”pedestrian crossing” sign to a ”school crossing” sign does
not lead to a dangerous situation for an autonomous vehicle).
Level 1 indicates a negative influence that is unlikely to cause
an accident. Level 2 indicates that the misclassification can
lead to serious accidents (e.g., misclassifying a ”speed limit
30” sign to a ”speed limit 80” sign can cause the vehicle to
accelerate to an unsafe speed, potentially leading to a serious
accident). The entry ’-’ represents a correct prediction by the
system.

We consider the traffic sign classification task based on the
GTSRB dataset [14]. We determine the severity levels for ev-
ery possible misclassification. Some representative traffic signs
and their severity levels of misclassifications are demonstrated
in TABLE II, while the complete list of severity levels of
GTSRB is presented in the appendix.

2) Probability: We estimate the probability of misclassifi-
cation and derive the probability matrix through experiments.
For this experiment, we test a deep neural network model
using the test dataset of GTSRB and record the experimental
results. We used a confusion matrix (C) to record the results
of the experiment, which is a n×n matrix (n is the number of

the classes in the test dataset). The element Cij represents the
number of instances of class i that are predicted as class j.
Based on the confusion matrix, we can derive a probability
matrix (P ). The element Pij represents the probability of
classifying an instance of class i as class j. When i ̸= j,
it indicates a misclassification. The probability is calculated
as:

Pij =
Cij∑n

k=1

∑n
l=1 Ckl

. (6)

C. Risk Levels Calculation

First, we assign severity scores to different severity levels
(sl) in the severity matrix (S), where higher severity scores
indicate that the misclassification has a higher impact on
safety. The element Sij is defined as follows:

Sij =

{
σ(sl), i ̸= j

0, i = j
(7)

where σ(sl) is a monotonically increasing function that assigns
the severity score according to the severity level. Based on
the risk level calculation, we then multiply the elements in
the severity matrix by the corresponding elements in the
probability matrix to obtain the risk level matrix (R), given
by:

R = S ⊙ P. (8)

We use the risk level matrix to calculate a risk score.
The risk score is a measure that reflects the overall risk
associated with the ML model and system. A lower risk score
indicates a safer model and system with respect to traffic sign
misclassification. The calculation of the risk score is given by:

Risk Score =

n∑
i=1

n∑
j=1

Rij , (9)

which is in the range of [0, σ(2)].



D. Safety Score and Weight

We utilize the risk score to calculate a safety score. This
safety score is used to evaluate the safety of individual ML
models and the overall NVML system. A higher safety score
indicates a safer ML system with respect to traffic sign
recognition. The safety score is calculated as follows:

Safety Score =
1

1 + Risk Score
, (10)

which is in the range of (0, 1].
We use the risk scores {rs1, rs2, · · · , rsT } of a set of T

individual ML models to assign a safety-aware weight to each
ML model for the weighted voting and the weight soft voting.
the weight wi assigned for model gi is determined by:

wi =

∑T
j=1 rsj

rsi
. (11)

We choose this weight because the value wi is inversely
proportional to the risk score rsi, which ensure that the model
exhibits a higher risk score is assigned a lower weight in the
voting mechanism.

VI. EVALUATION

We designed an experiment to evaluate the performance of
voting mechanisms used in NVML systems for traffic sign
recognition. The evaluation metrics include accuracy (Acc),
safety score, and the number of misclassifications in severity
level 2 (SL2) and severity level 1 (SL1) instances. We built a
three-version traffic sign recognition system consisting of three
different ML models: AlexNet [15], VGG16 [16], and Effi-
cientNetB0 [17]. These models were selected for their ability
to balance high accuracy and low computational requirements.
Each model was trained independently using the same training
set from GTSRB.

To assign safety-aware weights, we split the GTSRB test
set, which contains 12,630 images, in half. One half was used
for weight assignment, referred to as the ”weight assignment
set,” and the other half was used for evaluating the ML models
and the three-version traffic sign recognition system, referred
to as the ”evaluation set.” In this experiment, the severity
scores defined as σ(0) = 0, σ(1) = 1, σ(2) = 10, aiming
at penalizing misclassifications in severity level 2.

A. Safety-aware Weight Assignment

1) FMEA Method: We used the trained models to make
predictions on the weight assignment set, and assigned safety-
aware weights to each model based on their performance. The
prediction results and the assigned weights of the models are
shown in TABLE III (The weights are normalized).

2) Large Language Model Generation: In recent times,
large language models (LLMs) have demonstrated their ap-
plicability in both personal and business contexts across a
wide range of fields. Leveraging their capabilities to assist
with various tasks, LLMs have proven effective in enhancing
both work processes and daily life. Recognizing this potential,
we use an LLM, specifically GPT-4o, to generate benchmark

TABLE III: Prediction Results and Assigned Weights of the
Models

Model Acc (%) Safety (%) Weight
by FMEA

Weight
by LLM

AlexNet 94.28 92.02 0.126 0.206
VGG16 97.64 96.52 0.301 0.375

EfficientNetB0 98.53 98.14 0.573 0.419

TABLE IV: Performance of ML Models

Model Acc (%) Safety (%) SL2 SL1
AlexNet 94.17 91.26 45 155
VGG16 97.37 96.02 20 62

EfficientNetB0 98.13 96.98 17 27

weights for comparison with our weight determination method.
The LLM was prompted using specific keywords related to
NVML system and requirements for weight determination.
We provided the severity matrix and confusion matrix that
recorded the test results on the weight assignment set, in the
form of CSV files. The example prompt we used is:

”Determine the weights for models in the three-version
machine learning system that consists of AlexNet,
VGG16, and EfficientNetB0—the confusion matrix results
from each model tested on the same evaluation dataset.
The severity matrix represents the severity of every mis-
classification. The value in the confusion and severity
matrix should be integers. The model produces misclas-
sification with higher severity and probability should be
assigned a lower weight. The weight value is in the range
of 0 to 1.”

The weights generated by LLM are shown in TABLE III.
Note that the above prompt is one of the prompts we tried and
achieved the best performance in our experiments.

B. Machine Learning Model Evaluation

We then tested the models using the evaluation set. The
test results are presented in Table IV. As we can observe,
EfficientNetB0 demonstrates the best performance across all
evaluation metrics, with the highest accuracy and safety scores,
and the lowest number of SL2 and SL1 misclassifications.

The results indicate a strong relationship between the safety
score and the number of severe misclassifications. Models
with fewer severe misclassifications tend to have higher safety
scores, which reflects their ability to minimize potentially
dangerous errors. For example, AlexNet, which had the most
SL2 misclassifications, also had the lowest safety score among
the models tested.

C. NVML System Evaluation

We then deploy different voting mechanisms in the three-
version traffic sign recognition system. Each model receives
the same inputs from the evaluation set and makes predictions
independently. The voting mechanisms use the outputs of the
models to determine the final system output. The results are
presented in TABLE V.



TABLE V: Performance of Voting Mechanisms

Voting Mechanism Acc (%) Safety (%) SL2 SL1
Majority 97.88 96.69 17 56
Weighted 97.13 96.96 16 27

Simple Soft 98.32 97.12 14 47
Weighted Soft 98.40 97.92 11 24
LLM Weighted 98.24 97.05 15 42

LLM Weighted Soft 98.50 97.35 13 42

The results demonstrate that weighted soft voting exhibit
the best performance across all voting mechanisms tested.
These methods enhance accuracy and safety scores, even
outperforming the individual model EfficientNetB0 in safety
evaluation metrics. The NVML system maintains good perfor-
mance levels, even when including less accurate models such
as AlexNet, indicating the robustness of the NVML system.

Furthermore, the NVML systems employing soft voting,
weighted soft voting, LLM-based weight voting and weighted
soft voting all show improvements in accuracy compared to
the best-performing single model, EfficientNetB0. This sug-
gests that the proposed weight assignment method effectively
enhances safety and classification accuracy.

LLM-based weighted soft voting yield better safety im-
provements compared to majority voting and simple soft
voting. However, the improvements are not as pronounced as
those achieved by our proposed weight assignment methods.
Although we tried several prompts with the same confusion
matrices and the severity matrix, the results shown in TABLE
V are the best results we obtained. To further improve the
performance of the LLM-based weight assignment approach,
we may need more guides for the usage of confusion matrices
and the severity matrix to derive better safety-aware weights.

VII. CONCLUSION

This paper investigated voting mechanisms that can be
employed in an NVML system for a safety critical application.
We developed a safety metric based on the FMEA method
to evaluate the safety of ML systems and assign safety-
aware weights to both weighted voting and weighted soft
voting mechanisms. Our study demonstrated that safety-aware
weighted soft voting outperforms other voting mechanisms
across all safety evaluation metrics. Notably, this approach
not only enhances accuracy but also improves overall system
safety by increasing the safety score and reducing the number
of severe misclassification instances. The implementation of
the safety metric provides a reliable method for assessing and
enhancing the safety of ML systems in critical applications,
such as autonomous driving. This approach enables the assign-
ment of safety-aware weights, contributing to the development
of safer autonomous driving technologies.

Additionally, we explored the possibility of using LLMs to
determine safety-aware weights for the weighted voting mech-
anism. While this showed some improvement over majority
and soft voting, the results were not as significant. In the
future, we plan to refine our approach with better prompting
techniques to achieve improved outcomes.
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APPENDIX

We define the severity levels for all possible misclassifica-
tions of traffic signs in GTSRB dataset. In TABLE VI, the
ground truth traffic signs are listed in the first column, while
the class number of predicted signs is presented at the top line.
The severity level is either 0, 1, or 2, indicating that a higher
severity level means a more dangerous misclassification.
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