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Abstract—The seminal work on the software rejuvenation
model used a continuous-time Markov chain to analyze the
effectiveness of software rejuvenation for improving system
availability. The effectiveness in terms of steady-state availability
is determined by a condition on the transition rates, known as
the rejuvenation threshold. However, such a theoretical condition
has not been studied for software aging models with more
than two stages. This paper formulates the software rejuvena-
tion decision problem using a continuous-time Markov decision
process (CTMDP) and theoretically demonstrates the conditions
to determine the optimal rejuvenation policy, maximizing the
steady-state availability for the three-stage software aging model.
Furthermore, we develop an approximated policy evaluation
algorithm for the CTMDP-based software aging and rejuvenation
model that allows us to evaluate the steady-state availability of the
system with a given decision policy. Through a numerical study,
we confirm that the results of the policy evaluation algorithm
correctly fit the boundary conditions of the optimal policy for
the three-stage model. Our numerical results also demonstrate
the boundary conditions for models with more than four stages.

Index Terms—Optimal rejuvenation policy, software aging,
software rejuvenation, system availability, CTMDP

I. INTRODUCTION

Software aging is a commonly known phenomenon ob-
served in long-running software systems. Software aging is
generally caused by aging-related software faults that are
overlooked during software development and testing phases.
With a long-time software execution, aging-related errors can
accumulate over time and eventually cause a system failure
[1]. To mitigate the problem of software aging, researchers and
engineers employ software rejuvenation, which proactively re-
leases operating system resources [2]. The first software aging
and rejuvenation model was developed using a Continuous-
Time Markov Chain (CTMC), consisting of four states that
represent 2-stage software aging (i.e., one aging state followed
by a failure state). The CTMC model enables the analysis
of the condition to determine the software rejuvenation that
can improve the system availability by rejuvenation at an
aging state. However, the software aging can progress with
multi-stages that cannot be simply represented by the 2-stage
software aging model. For example, Bao et al. [3] considered
a system with resource leaks where software aging progresses
in multiple stages.

To determine the optimal timing to decide the software
rejuvenation in a multi-stage software aging system, existing
studies used Markov decision processes (MDPs). Pfening et
al. [4] developed MDPs for determining the optimal rejuve-
nation time for server-type software. The system is a multi-
stage model with fixed time intervals. They developed two
different policies to decide whether the system should continue
in service at any stage through MDP. Okamura et al. [5]
presented an MDP formulation for a multi-degree degradation
level system with software aging and rejuvenation. The policy
iteration algorithm is used to derive the optimal rejuvenation
policy. Eto et al. [6] formulated a semi-Markov decision
process for a multi-states service degradation model. A recent
study also employs MDP to derive the optimum rejuvenation
policy for resiliency enforcement of heterogeneous network
clusters [7]. In contrast to these existing studies, our study aims
to investigate the boundary conditions of optimal rejuvenation
policies for maximizing steady-state availability in multi-stage
software aging and rejuvenation models.

In this paper, we use a Continuous-Time Markov Decision
Process (CTMDP) to formulate a multi-stage software aging
system where rejuvenation can be determined in each stage.
Since the rejuvenation decision is associated with aging states,
the problem is formulated as a decision problem. In contrast to
MDP, CTMDP can formulate the time spent in a state, which
is necessary in the analysis of availability. Given a decision
policy that assigns an action to each state, a CTMDP can be
transformed into the CTMC. We can derive the optimal policy
of the CTMDP that can maximize the system availability by
comparing the steady-state availabilities computed from the
CTMCs resulting from given rejuvenation policies. Through
this direct comparison approach, we theoretically show the
boundary conditions of optimal rejuvenation policies for the
three-stage software aging and rejuvenation model. According
to our parameterization of the model, the optimal rejuvenation
policy can be characterized by the difference between the
failure recovery rate and the rejuvenation rate. We find that
a larger difference tends to encourage an earlier decision of
rejuvenation, while a smaller difference discourages rejuvena-
tion action.

The direct comparison approach is not efficient for more
than three-stage software aging models. Therefore, we develop



a policy evaluation algorithm for CTMDPs that approximately
estimates the steady-state availability achieved by a given
rejuvenation policy. To compute the approximated availability,
we introduce two reward functions for CTMDP to evaluate the
total uptime and total runtime. While we cannot obtain the
exact steady-state availability by a finite number of iterations,
we can compare different policies with the approximated avail-
ability values computed from the accumulated uptime divided
by the total runtime and determine the optimal policy that
maximizes the availability. Through the numerical analysis,
we visualized the boundary conditions of the optimal policy
that correctly fit the theoretical boundaries for the three-stage
software aging model. We also show the results of the models
with more than four stages and discuss the tendencies of the
optimal rejuvenation policies for multi-stage software aging
models.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces CTMDP and
shows how the seminal two-stage rejuvenation model can be
formulated by a CTMDP. Section IV explains the CTMDP
formulation for the three-stage software aging model. Based
on the steady-state analysis of the CTMCs, we show the
theoretical boundary conditions of the optimal rejuvenation
policy. In Section V, we propose the policy evaluation algo-
rithm to numerically derive the optimal rejuvenation policy
from CTMDPs. Section VI presents our numerical evaluation
results. Finally, Section VII gives our conclusion.

II. RELATED WORK

Huang et al. [2] first formulated software aging and re-
juvenation behavior in a CTMC with two operational states.
They focused on comparing the downtime costs due to system
failure and rejuvenation, and a rejuvenation threshold for
software rejuvenation was computed. This analytical approach
gives theoretical conditions for distinguishing whether to take
software rejuvenation or not in the two-stage software aging
model. However, such a theoretical condition for software
rejuvenation in multi-stage aging cases has not been discussed.

After the seminal work, many researchers exploited various
types of Markovian models to analyze the software rejuve-
nation systems. Dohi et al. [8] proposed a more generalized
model using a semi-Markov process (SMP), which allows
general distributions for the state transition times. Dohi et al.
[9] then developed a non-parametric algorithm to determine
the optimal rejuvenation policy. Garg et al. [10] introduced a
time-based rejuvenation method using a Markov Regenerative
Stochastic Petri Net (MRSPN) model. This model captures the
effect of time-based software rejuvenation on the availability
of the system. They also discussed the optimal rejuvenation
interval, which minimizes the system unavailability. Machida
et al. [11] applied SMP to model system behavior and
analyzed the system availability and job completion time.
They proposed a virtual machine (VM)-based software life-
extension method that needs to be triggered before software
rejuvenation, allowing the system to shorten the job com-
pletion time and maximize the system availability. Watanabe

et al. [12] developed CTMCs to analyze the behaviors of
drone systems subject to software aging. They focus on real-
time image processing on a drone, which requires a long
time operation. A method that combines task offloading and
software rejuvenating is presented to improve the system
availability and throughput.

Measurement-based studies focus on measuring system met-
rics related to the software aging problem in long-running
systems. Vaidyanathan et al. [13] proposed a measurement-
based method to estimate the trend and exhaustion rates of
a system. They focused on collecting workload and resource
usage data, which are considered to be the main source of sys-
tem degradation. Pietrantuono et al. [14] investigated software
aging in modern object detection algorithms through long-
running experiments. By tracking software aging metrics, the
experimental results reveal that the object detection application
exhibits software aging phenomena regardless of the different
algorithms and datasets used. Watanabe et al. [15] studied
the software aging phenomenon in real-time object detection
systems for resource-limited applications, such as IoT devices.
Free memory and memory swap usage were examined to
determine software aging symptoms. The experiment results
also show the expected failure time due to software aging. In
this study, we assume that software aging progresses in multi-
stages.

CTMDP is a variant of MDP that incorporates the influence
of the transition times between the states. CTMDP has been
used for many computing and network applications. Zhang
et al. [16] proposed a CTMDP-based model against multi-
stage cyber attacks. Multi-stage here indicates the different
phases of a cyber attack. There is a high degree of variability
between the stages, which is different from the problem we
are studying. Buchholz et al. [17] developed an algorithm
to compute optimal policy for finite-horizon CTMDP model.
They experimentally simulated a queueing system and algo-
rithmically calculated the optimal policy for switching the
system on or off. Hou et al. [18] proposed a CTMDP-based
resource offloading scheme for vehicle networking. A value
iteration method is used to find the optimal offloading policy.
In contrast to these existing studies, we attempt to apply
CTMDP to model multi-stage software aging and rejuvenation.

III. CONTINUOUS-TIME MARKOV DECISION PROCESS

A. CTMDP Definition

CTMDP is an extension of MDP. MDPs are a commonly
used method to formulate decision-making problems. Consider
a Markov chain {Xn;n ∈ Z+}, which holds the Markov
property P {Xn+1 = xn+1|X0 = x0, . . . , Xn = xn} =
P {Xn+1 = xn+1|Xn = xn}. A Markov chain becomes an
MDP when the transition probabilities can be affected by
an action [19]. The MDP describes a scenario in which an
agent must choose an action from an action set in every state
of the model. The objective is to find a policy which can
maximize the reward. The definition of reward may depend
on the specific study or application.



In a CTMDP, the problem changes into continuous
space. The transition time between the current state and
the next state is assumed to be exponentially distributed.
Given a policy ρ, which is a mapping from states to
actions, the Markov property in CTMDP is defined as
P ρ (X (t+ u) = s|{X (w) ; 0 ≤ w ≤ t}) = P ρ(X (t+ u) =
s|X(t)). A(s) represents the action space, which contains a
set of actions that can be selected in state s. Denote τs,a as
the time to the next state when action a is chosen in state s.
τs,a follows exponential distribution H (x|s, a) with parameter
µ(s, a). It can be defined as

H (x|s, a) = 1− e−µ(s,a)x, x ≥ 0. (1)

µ (s, a) is a constant equal to the sum of the rates to transit
from state s.

µ (s, a) =
∑
s′∈S

q(s, a, s′), (2)

where q(s, a, s′) represents the transition rate from state s
to state s′ with action a.

The optimal policy of a CTMDP can be derived from the
analysis of the value function. The value function V ρ

α (s)
represents the expected cumulative discounted reward obtained
through the process starting from state s under policy ρ, which
can be formulated with the value of the previous states V ρ

α (s′)
[20]

V ρ
α (s) =

r (s, ρ(s)) +

∫ ∞

0

e−αtdH (t|s, a)
∑
s′∈S

p(s′|s, ρ(s))V ρ
α (s′),

(3)

where r (s, ρ(s)) is the instantaneous reward for action ρ(s),
α ∈ [0, 1] is a discount factor to achieve convergence of
the value function over an infinite horizon, and p(s′|s, ρ(s))
represents the transition probability from state s to state s′. The
optimal policy ρopt is given by maximizing the value function
V ρ
a (s) over all possible policies ρ. Mathematically, it can be

expressed as

ρopt(s) = argmax
ρ

V ρ
α (s). (4)

B. Two-stage model formulation

The first software rejuvenation model presented by Huang
et al. [2] can be formulated as a two-stage aging model of
CTMDP as shown in Figure 1. State 0 represents the robust
state, while state 1 is a failure probable state. States F and
R denote the failure and rejuvenation states, respectively.
We assume that the aging rate is β. The failure rate is λ.
The software rejuvenation transitions are activated only when
rejuvenation action is determined. The rejuvenation trigger rate
is denoted as δ. The failure-recovery rate and the rejuvenation
rate are denoted as µf and µr, respectively. A decision can

Fig. 1: A two-stage aging model by CTMDP

TABLE I: Reward for the uptime and the total runtime in the
two-stage aging model.

s a ru(s, a) rt(s, a)
0 an

1
β

1
β

1 an
1
λ

1
λ

1 ar
1

δ+λ
1

δ+λ

F an 0 1
µf

R an 0 1
µr

only be made in state 1 which is denoted as a square in Figure
1. The system can issue either one of the following two actions

• an is No action.
• ar is Rejuvenation.

The policy is defined as the mapping from state 1 to either
an or ar. In this model, there are two feasible policies, which
are ρ1 = (ar) and ρ2 = (an). When policy ρ1 is chosen, only
state transition to state F is allowed at state 1. On the other
hand, if policy ρ2 is chosen, both state transitions to state F
and state R are possible from state 1. As a result, policies
ρ1, ρ2 can result in two different CTMCs corresponding to
the two probabilistic state transition models with and without
software rejuvenation shown in Huang et al. [2]. Through
the analysis of two CTMCs, the seminal work derives a
rejuvenation threshold. They defined the average cost per unit
cr for taking rejuvenation and cf for failure. By taking the
derivative with respect to δ of the cost expression for software
rejuvenation, they derive condition g which establishes the
relationship between cr and cf .

g =
λ(β + µr)

λ(µf + β) + βµf
. (5)

Condition g is defined as the rejuvenation threshold. When
cf > gcr, it is better to perform software rejuvenation
immediately in state 1. On the other hand, when cf < gcr,
there is no benefit to performing rejuvenation because the cost
of software rejuvenation increases and the overall runtime also
increases. However, for a system with more than two-stage
software aging, the condition of effective rejuvenation could
be different.



(a) A three-stage aging model by CTMDP

(b) CTMC for policy ρ1

(c) CTMC for policy ρ2

(d) CTMC for policy ρ3

Fig. 2: A CTMDP for three-stage aging model and the CTMCs

IV. THREE-STAGE AGING MODEL

A. Definition

With the definitions in the previous section, we can naturally
extend the model into three stages. In this three-stage model,
we add a new state that represents another stage of software
aging, denoted as state 2 in Figure 2(a). The system can decide
a rejuvenation action in state 1 and state 2, thus the states are
represented as squares. We assume that the failure rate in a
later stage is higher than that in the current stage. The failure
rate from state 1 to F is λ1, while we set the failure rate from
state 2 to F to λ2 > λ1. In this model, a decision policy
is defined as a mapping from state 1 and state 2 to either
one of an or ar. There are four possible mappings in theory.
We assume if rejuvenation action is determined in state 1, an
cannot be selected in state 2. Therefore, we assume that ar is
consistently chosen once ar is selected in an earlier stage of
aging. As a result, there are three possible rejuvenation policies
in this model. Each policy is represented as a pair of actions
in state 1 and state 2, such as ρ1 = (ar, ar), ρ2 = (an, ar)
and ρ3 = (an, an). Figures 2(b), (c), and (d) show the CTMCs
corresponding to the chosen policy ρ1, ρ2, and ρ3, respectively.

By the analysis of the corresponding CTMCs, the achievable
steady-state availability can be computed by the sum of the
steady-state probabilities that the system is in either one of the
operating states (i.e., states 0, 1, 2). Let π =(π0, π1, π2, πf , πr)
be the steady-state probability vector of the CTMC. The
steady-state probability π is given by the solution of the
system of equations πQ = 0, and πeT = 1 where Q is
the infinitesimal generator matrix of the CTMC and eT is n-
dimensional vector which all the element is 1.

The infinitesimal generator matrices Qj , j ∈ {1, 2, 3} are
given by

Q1 =


−β β 0 0 0
0 − (β + δ + λ1) β λ1 δ
0 0 −(δ + λ2) λ2 δ
µf 0 0 −µf 0
µr 0 0 0 −µr

,
(6)

Q2 =


−β β 0 0 0
0 − (β + λ1) β λ1 0
0 0 −(δ + λ2) λ2 δ
µf 0 0 −µf 0
µr 0 0 0 −µr

,
(7)

Q3 =


−β β 0 0
0 − (β + λ1) β λ1

0 0 −(δ + λ2) λ2

µf 0 0 −µf

. (8)

The steady-state probabilities π for the corresponding
CTMCs can be derived by the linear system of equations.
Then, the steady-state availabilities Ai for three CTMCs are
derived as follows.



A1 =
X1

X1 + Y1
,

X1 = 1 +
β(β + δ + λ2)

(β + δ + λ1)(δ + λ2)
, (9)

Y1 =
β((δ + λ2)(δµf + λ1µr) + β(δµf + λ2µr))

(β + δ + λ1) (δ + λ2)µfµr
.

A2 =
X2

X2 + Y2
,

X2 = 1 +
β(β + δ + λ2)

(β + λ1)(δ + λ2)
, (10)

Y2 =
β(λ1 (δ + λ2)µr + β(δµf + λ2µr))

(β + λ1) (δ + λ2)µfµr
.

A3 =
(β2 + 2βλ2 + λ1λ2)µf

λ1λ2µf + β2(λ2 + µf ) + βλ2(λ1 + 2µf )
. (11)

B. Analysis

We can compare the steady-state availabilities achieved by
different rejuvenation policies from expressions (9)(10)(11).
The optimal policy for the CTMDP can be analytically given
by the following proposition.

Proposition 1. Given parameters β, δ, λ1, λ2, µf , µr ∈ R+,
where λ1 < λ2 and µf < µr. The optimal policy ρopt is
uniquely determined by the difference of rejuvenation and
failure-recovery rates ∆µ = µr − µf with the boundary
conditions g1 and g2.

ρopt =

 ρ1 ∆µ ≥ g1,
ρ2 g1 > ∆µ ≥ g2,
ρ3 ∆µ < g2.

(12)

g1 =
(β2 + βδ + βλ2)µf

δλ1 + βλ2 + λ1λ2
, (13)

g2 =
(β2 + βλ1)µf

−βλ1 + 2βλ2 + λ1λ2
. (14)

Proof. A system with ρ1 achieves a higher availability than
a system with ρ2 when A1 − A2 ≥ 0. Therefore, taking the
difference between A1 and A2, we have

A1 −A2 =

− (βδ (δ + λ2)µfµr(β
2µf + λ1(δ + λ2)

(µf − µr) + β(δµf + 2λ2µf − λ2µr))/(λ1(δ + λ2)µfµr

+ β(δ + λ2)(λ1 + 2µf )µr + β2(δµf + (λ2 + µf )µr))

((δ + λ1)(δ + λ2)µfµr + β2(δµf + (λ2 + µf )µr)

+ β(δ + λ2)(δµf + (λ1 + 2µf )µr))).
(15)

A1 − A2 ≥ 0 holds when the numerator is positive, which
means

(βδ (δ + λ2)µfµr(β
2µf + λ1(δ + λ2)(µf − µr)

+ β(δµf + 2λ2µf − λ2µr)) ≥ 0.
(16)

From the equation above, we can drive the condition of ∆µ
for satisfying A1 −A2 ≥ 0 as follows

∆µ ≥ (β2 + βδ + βλ2)µf

δλ1 + βλ2 + λ1λ2
= g1. (17)

Next, a system with ρ2 achieves a higher availability than
a system with ρ3 when A2 − A3 ≥ 0. Therefore, taking
difference between A2 and A3, we have

A2 −A3 =

− (βδ (δ + λ2)µfµr

(β2µf + λ1(δ + λ2)(µf − µr)+

β(δµf + 2λ2µf − λ2µr))/(λ1(δ + λ2)µfµr+

β(δ + λ2)(λ1 + 2µf )µr + β2(δµf + (λ2 + µf )µr))

((δ + λ1)(δ + λ2)µfµr + β2(δµf + (λ2 + µf )µr)

+ β(δ + λ2)(δµf + (λ1 + 2µf )µr))).

(18)

A2 − A3 ≥ 0 holds when the numerator is positive, which
means

∆µ ≥ (β2 + βλ1)µf

−βλ1 + 2βλ2 + λ1λ2
= g2. (19)

Finally, comparing g1 and g2, we have

g1 − g2 =

µfβ(λ2 − λ1)(β
2 + 2β(δ + λ2) + λ1(δ + λ2))

(δλ1 + (β + λ1)λ2)((2β + λ1)λ2)− βλ1)
.

(20)

Under the condition λ1 < λ2, the numerator and denom-
inator are both positive. Therefore, two boundary conditions
satisfy g1 > g2. □

The proposition states that the optimal rejuvenation policy
that maximizes the steady-state availability is uniquely de-
termined by the difference between rejuvenation and failure-
recovery rates with the boundary conditions g1 and g2. We
can also show the following corollaries about the boundary
conditions without proof.

Corollary 1. The boundary conditions g1 and g2 are mono-
tonically increasing with respect to β.

Corollary 2. The boundary condition g2 is independent of δ.

From Proposition 1 and Corollary 1, the boundaries of the
optimal policies can be visualized on β − ∆µ coordinate
for given λ1, λ2, δ, and µf . Figure 3 shows an example of
boundary conditions g1 and g2 in the β−∆µ coordinate where
other parameters are set as shown in Table III. Given the value
of β, the optimal rejuvenation policy is uniquely determined
by ∆µ. The upper area above the g1 condition implies that ρ1
is the optimal policy if a β−∆µ coordinate falls in this area.
Similarly, if the coordinates fall in the middle area between
g1 and g2, ρ2 is the optimal policy. If the coordinates fall in
the lower area under g2, ρ3 is the optimal policy.



V. POLICY EVALUATION ALGORITHM

Although the conditions for the optimal rejuvenation policy
can be obtained theoretically for the three-stage aging model,
such a symbolic solution is formidable when the number of
stages increases. In order to analyze the optimal rejuvena-
tion policies for multi-stage software aging and rejuvenation
models in general, we develop a numerical policy evaluation
algorithm. The algorithm derives the optimal policy by com-
paring the approximated steady-state availabilities achieved
by feasible policies. We introduce two rewards for each pair
of state and action in the CTMDP, which are the expected
uptime ru(s, a) and the expected total runtime rt(s, a). The
availability can be approximated by the ratio of ru(s, a) to
rt(s, a). The rewards for the two-stage and three-stage aging
models can be defined as Tables I and II, respectively. For
example, the expected sojourn time in state 1 when choosing
ar in the two-stage model is 1

δ+λ , which is equal to the uptime
reward and the total runtime reward. Since F and R are down
states, the uptime reward is 0, while the total runtime reward
is equal to the expected time to transit to state 0.

Algorithm 1 Policy evaluation for n-stage aging model

Input: n; β, δ, µf , µr, λ1, λ2, ..., λn−1

1: for ρ ∈ ρ1, ..., ρn do
2: for s ∈ S do
3: Uρ(s)← 0
4: Tρ(s)← 0 ▷ Initialize state value to 0
5: end for
6: repeat
7: for s ∈ S do
8: ∆← 0
9: u← ru (s, ρ(s)) +

∑
s′∈S p(s′|s, ρ(s))Uρ (s

′)
10: t← rt (s, ρ(s)) +

∑
s′∈S p(s′|s, ρ(s))Tρ (s

′)
11: if t ̸= 0 ∧ Tρ (s) ̸= 0 then
12: ∆← max(∆,

∣∣∣ut − Uρ(s)
Tρ(s)

∣∣∣)
13: end if
14: Uρ (s)← u
15: Tρ (s)← t ▷ Pass the value for the next loop
16: end for
17: until ∆ < σ
18: end for
19: ρopt ← argmax

Uρ(0)
Tρ(0)

Output: ρopt

The policy evaluation algorithm is shown in Algorithm 1.
For an n-stage software aging and rejuvenation model, there
are n corresponding policies. The number of stages n and
the feasible policies ρ1, ..., ρn are given as inputs. For each
policy ρ, two arrays Uρ(s) and Tρ(s) are initialized with zero
values. These arrays are used to accumulate the total uptime
and runtime, respectively, during repeat iteration. In the repeat
iteration starting from line 6, two temporary variables, u and t,
are computed as the values of the given state s by expression
(3) in lines 9 and 10. Note that we set the discount factor α = 0
in our algorithm to make a stable numerical computation. The

TABLE II: Reward for the uptime and the total runtime in the
three-stage aging model.

s a ru(s, a) rt(s, a)
0 an

1
β

1
β

1 an
1

λ1+β
1

λ1+β

1 ar
1

λ1+β+δ
1

λ1+β+δ

2 an
1
λ2

1
λ2

2 ar
1

λ2+δ
1

λ2+δ

F an 0 1
µf

R an 0 1
µr

TABLE III: Parameters values for numerical experiments

Variables Values [1/hour]
δ 1/2
λ1

1/12
λ2

1/10
µf 1

Fig. 3: Boundary conditions of the optimal policy

Fig. 4: Computed policy for three-stage aging model



Fig. 5: Computed policy for four-stage aging model Fig. 6: Computed policy for five-stage aging model

Fig. 7: Computed policy for six-stage aging model Fig. 8: Computed policy for seven-stage aging model

proportion of u to t is then compared to the proportion of
Uρ(s) to Tρ(s), and the difference is recorded as ∆ at line 12.
Then, Uρ(s) and Tρ(s) are updated with the current values
u and t, respectively, at lines 14 and 15. After computing
the values of all the states, in line 17, the algorithm judges
whether the value of ∆ is less than σ, which is a small number
to judge the convergence of values. The same calculation is
performed for all policies. Finally, after obtaining the values
of all the states, we calculate the ratio of Uρ(s) and Tρ(s) in
state 0, which represents the approximated system availability.
This value is used as a criterion to compare the effectiveness
of different policies. At line 19, the policy ρ that maximizes
the value of Uρ(0)/Tρ(0) is chosen as the best policy.

VI. NUMERICAL STUDY

A. Three-stage model

In this section, we apply the numerical policy evaluation
algorithm for the CTMDP and validate the results with the the-
oretical conditions shown in Section IV. We use the parameters
in Table III and vary the values of β within {0.1, ..., 1} and ∆µ
within {1.0, ..., 10.0}. Note that these parameter values satisfy
the precondition of Proposition 1. The computed optimal
policies at different combinations of β and ∆µ are plotted
in Figure 4, where each optimal algorithm is distinguished by
shape and color. For the comparison, the theoretical boundary
conditions (g1 and g2) are also depicted on the plot.

As can be seen, the optimum policies evaluated by the
algorithm are clearly distinguished by the theoretical boundary



conditions, indicating that for the three-stage aging model, the
optimal policy derived by the algorithm correctly matches the
theoretical results.

B. More than four-stage models

By applying the policy evaluation algorithm, we can ana-
lyze the boundary conditions for more than four-stage aging
models. We show the results obtained for n = {4, 5, 6, 7} in
Figure 5, 6, 7, and 8, respectively. The transition rate between
two consecutive states is set to β. The failure rate λ1, λ2, ... in-
crease monotonically which represents λ1 < λ2 < ... < λn−1.
The condition µf < µr remains unchanged. The values of µf

and δ are assumed unchanged.
We can see that given a value of β for a multi-stage aging

model, when ∆µ increases, software rejuvenation should be
triggered as early as possible. This is reflected in the fact that
changes in strategy are monotonous. The state s of the trigger
of software rejuvenation is advanced one step at a time as
∆µ increases. Similarly, given a value of ∆µ, the software
rejuvenation should be delayed as much as possible as the
value of β increases. It can be deduced that the same law is
satisfied for models with more than seven stages.

As the model has more aging stages, candidate policies also
increase. For example, when n = 7, the optimal policy can
be either one of seven candidate policies. However, the policy
that triggers software rejuvenation only in later stages, such
as ρ6 in Figure 8, has a lower chance of the optimum policy.
This observation implies that an earlier decision of software
rejuvenation potentially achieves a better availability than the
rejuvenation decision in the later stages.

Considering practical usage, our numerical plots can give a
hint to determine the appropriate timing to trigger software
rejuvenation. Although engineers cannot access the exact
failure rate values, such as λ1, λ2, . . . , they may collect the
information for ∆µ by experiments and software aging stages
via monitoring resource usages which may provide a guess of
the region on the β−∆µ coordinate. The engineers can at least
avoid a wrong choice of rejuvenation policy from the pattern
of optimum rejuvenation policies exhibited in our plots.

VII. CONCLUSION

We present an approach to formulate multi-stage software
aging and rejuvenation systems based on CTMDP and analyze
the optimal policies maximizing the system availability. For
the three-stage aging model, we derive theoretical conditions
that can determine the optimal rejuvenation policy. For the
software rejuvenation decision problem formulated by CT-
MDP, we developed an approximate policy evaluation algo-
rithm to derive the optimal rejuvenation policy by introducing
the rewards for evaluating availability. This algorithm enables
the comparison of the policies without generating CTMCs.
Through the numerical analysis, we show that the obtained
optimal policy matches with the theoretical results in the three-
stage model. We also showed the boundaries of the optimal
rejuvenation policies for more than four-stage models.
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