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Machine Learning Systems

e Many systems involve ML and Al components

Autonomous vehicle Voice assistant device Factoryr(a)g(t;:matmn
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Pillars and requirements of
Trustworthy Al

Trustworthy
Artificial Intelligence

European Commission
High-Level Expert Group on Al C.
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Subsection 5.6 Subsection 5.7 Subsection 5.8

Connecting the dots in trustworthy Artificial Intelligence: From Al principles, ethics, and key requirements to responsible Al systems and regulation
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ML system reliability

e Various threats to ML system reliability

e ML model mispredictions

o Out-Of-Distribution
e Adversarial Example

e Software and hardware faults

e Software bugs

« Transient memory errors (Soft Error)
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In-distribution

OOD

Keras/Caffe..

Torch/Theano..

CUDA/cuDNN
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Undesirable consequences

e Failures of ML components adversely impact society

Tesla in self—driving mode GPT-4V often made mistakes

causes 8 vehicle crashes when describing the medical image

Facial recognition technology
jailed a man for days

N &
S

B Ry [/
https://bit.ly/3m9kI8b

https://shorturl.at/xfgsh

https://shorturl.at/JIob5
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Engineering for ML system reliability

e Layers of approaches

Machine '\ Software System Operation
Learning /Engineering’ Engineering Engineering

i X

Model hardening . _ _
ML testing N-version architecture
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Outline of this talk

e System engineering
e N-version ML architecture for ML system reliability

e Operation engineering
ML system rejuvenation for safe autonomous driving
e ML model maintenance for high-availability ML system
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N-version ML architecture
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e
N-version ML system

e Suppressing erroneous outputs by multiplexing ML inferences

Relying on a single ML model N-version ML system

System System

Input 1 ee—p  Model| 1 =error

INput .| ML model =E€rrores—p error
INpUt 2 ey Model 2 I’L’D_>

compare

Inference errors directly impact

the system output Inference errors can be

detected by comparison
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Model diversity & Input diversity

e To diversify multiple ML inferences
e Model diversification

e Use different ML algorithms and datasets to build ML models
e Input diversification

e Use different input data sampled from the same target

" JInput1 === ML model 1 1
/’-~\\’¢””

',Target‘ ______ = INPUt 2 sy ML MOdE| 2 =y

\
\\s f’lN
\\\\\ - Com are
Input U >Input3 ———p ML model 3 j_|_> P
Model
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Input data diversification

e ML models are input sensitive
e ML models can be fooled by crafted inputs (Adversarial samples)
— Opposite is also possible

Add noise

Recognition error Success!
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Target

Mitigation for

Components
to use

Sources of
diversity

Cost
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N-version programming
Software program (generated
from specification)

Software faults

Two or more functionally
equivalent programs from the
same specification

Development teams,
programming languages,
libraries and tools, etc.

high
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Comparison to N-version program

N-version ML

ML module
(constructed from data)

Prediction errors

One or more ML model for
the same task

ML algorithms, hyper
parameters and input data

Low
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Reliability improvement

e 3-version traffic sign classification systems
e Consisting of 3 diversified data and

3 deep neural networks 100
% 0.95
LeNet =
N T
E @5 8 E5S 558508 5 55
30k NN R S-S S T
—’”30km/h;30km/h TS S S S EEELEEEEEEEE
Rl fEfefeEEsRFERE
ResNet50 Moo eaan
nninn | , 2 :
3-version Single-version
system system

[Q. Wen, et al. ISSRE2023]
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Architecture selection problem

e Given a set of input data and a set of ML models, what is the
architecture that can maximize the reliability?

e Which ML model is used?
e Which input data is fed to which ML model?

., Set of input data N Set of ML modes N-version architecture
, q
' Vo \
I I I |LeNet I _ LeNet
i - o &g -
I 1y —

: origin noise I - H[[UUUD[ I origih
| : : AlexNet ! : < AlexNet
OB - a-
1 : : : rotate

N rotate J \ ! Reliability?
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Empirical observation

e Reliability of N-version image classification system depends on the
adopted architecture

Dataset : MNIST

e ML models : LeNet, AlexNet

e Diversified input data : Original, Noise added

e Decision : Output only when the two versions agree on the results
Original —=»{ LeNet _L'E N Original -[-> LeNet _L'E N Original —> LeNet _L'E N
Noise —=» LeNet AlexNet Noise ——» AlexNet
added 0.996667 0.992094  added 0.996668
Original ——» AlexNet L’D——» gldocllzz -[-> LeNet L’D——» Original —— AlexNet L’D——»
Noise —p AIexNetI g Noise —— LeNet I
added 1 0.996264 © 2025 System Dependability La). 991597  added 0.9966675
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Reliability model for N-version ML

e Reliability is affected by the combination of input data and ML
model

— Can we theoretically formulate the relation?
e Consider the reliability model for a classification system

Problem setting

Input data : Two input data for the same target

ML model : Two ML models for the same classification task
Decision rule : Output only when the two versions agree
Reliability : The probability that the system does not output errors
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Reliability of one-version system

e Notation

e Input data : x;,i ={1,2,...}

e ML model : m;,j = {a,b, ...}

e Sample space of input data : S

 Error set on which ML model m; outputs error . E; c S
e Reliability of the ML system using m; for input data x;

S Ej

2025/10/21 © 2025 System Dependability Lab
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Two-version architectures s cases

Single model double input Double model single input Double model double input
(SMDI) (DMSI) (DMDI)
S I T i

Xy =P Mg my Xy === Mp

SMDI(mg; x{,X5) DMSI(mg, my; x1) DMDI(mg; x4, mp; X5)
it L LR
Xy === Mp mpy Xy === Mg,

SMDI(my; x4, X2) DMSI(mg, my; x5) DMDI(mg; x5, mp; x1)
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Reliability of Two-version system

o If Px; € E;] is independent

e The error probability of 2-version system is calculated by the
product of individual error probabilities

1—Plx, e E;] " Plx, € E]

¢ | Ea E,,

e In practice, the independent assumption does not hold

e Erro set E; can have intersection
e Input data x; does not follow the identical distribution
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Diversity metrics

e 2 ML models may have an intersection of error sets

Intersection of errors (Model similarity)

Let E_,E, be the subsets of input space S that makes ML models m,,m,
output errors, respectively. The intersection of errors a;,; € [0,1] is
defined by the conditional probability

Px; € E, N E,]
Upjai = Plx; € Ep|x; € Eg] = ——— :

P[xi € Ea]
where P[x; € E;] > 0
\_ Y,
e Reliability of DMSI system X1 —— Mg —:::D_
L
Rousios . =1—@par Pl € Bl |im
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Diversity metrics

e Two input data are not independent

Conjunction of errors (Input similarity)

Let x4, x, be the input data for ML model m; sampled from S. Define
conjunction of errors g;,; € [0,1] by
P|x; € Ej, x, € E{]

Bja1 = Pr|x, € Ej|x; € E;| =

P|x; € E]
where P|x; € E;| > 0
e Reliability of SMDI system X1 —> Mg }D'
L
RSMDIa’mZ =1- :Ba,2|1 + Plx; € Ea] Xy ——=> Mg
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Reliability of DMDI system

e Both model similarity and input data similarity impacts the

reliability
e Reliability of DMDI(mg; x{, my; x5)

RDMDIa,mb,2 =1- [ab,2|a,1r\2 *Bazi1 + Xp,2|a,1n2 ° (1 — ,Ba,2|1)_

Ap2ia1n2 = Plx; € Eplx; € EEM € Eg]
Ap21a1nz = Plx; € Ep|x; € Eg,x; € E]

——

X1

xZ_

>

Mg

—

mp

The reliability is characterized the parameters associated with

Input similarity &Model similarity
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Numerical example

e Under the conditional independence assumption of model

The best architecture is determined by
the balance between ay,,, and B, ;1

In realistic scenario in practice,
DMDI, 1np, IS preferable architecture

Model similarity .
2025/10/21 © 2025 System Dependability Lab 23



ML system rejuvenation




Perception system

e Perception systems are one of the most crucial ML-based
components for autonomous vehicles

e Perception systems are also subject to faults and malicious
attacks, impacting safety

e e.9g., bit-flip errors and adversarial attacks

2025/10/21 © 2025 System Dependability Lab 25
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N-version perception system

e N-version architecture using multiple object detection models

e Each object detection model degrades gradually

e Healthy — Compromised (but functional) — Faulty (Non-functional)

Sensors Multi-version ML system

C]:]_

\
X

A

ﬁ“‘ _| Input
= data
NR— M
——

N
L modulesJ

g0-0)/

Yvy

Output
utpu>

voter

\
/
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AV simulator experiments

e 3-version perception tolerates at most one compromised model
e However, safety is not guaranteed with more severe cases
— Recovery is needed

System state YOLO Model 1st collision frame Total frames Collision rate%  # Collisions
Three-version
(310J0) v5s, vSm, v51 NA 682 0 0/10
21l v5s, v5m, v5m_FI NA 693 [ o Safe oo ]
(241J0) v5s, vim, v5s_FI NA 682 0 /10
(14210) v5s, v5s_FI, v5m_FI 272 666 28.82 5/10
(14210) vSm, v5s_FI, vSm_FI 335 654 33.08 Unsafe 7/10
(0310) v5s_FI, vSm_FI, v51_FI 187 643 57.00 8/10

J

Number of compromised models

2025/10/21 © 2025 System Dependability Lab 27
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ML model rejuvenation

e Compromised ML models can be rejuvenated periodically to

keep safety

e

e Deploy a healthy ML model and initialize the ML module

Sensors

Input
data

Multi-version ML system

\
X

D

A

2025/10/21

Yvy

Output
utput.

N
L modules J

( Rejuvenation
k ml:(;hanism
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Safety evaluation with AV S|mulator
e Simulation tools and environment TSRS o

e Carla AV simulator

o Cooperative driving co-simulation
framework OpenCDA

e Object detection model
e YOLOV5s6, YOLOVEmM6, YOLOVSI6
e Safety metrics

e Collision rate
e First collision frame number

1o (& S I
(¢) Town04 (d) Town05
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Fault injection experiments

e Compromised versions of YOLOv5 models
e Use PyTorchFI to change YOLOv5' parameters randomly

o« Compromised detection model fails to detect the vehicle, resulting
in a collision
Healthy model Compromised model

2025/10/21 © 2025 System Dependability Lab 30
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Evaluation results

e The system with rejuvenation achieves 0% collision rates across
all tested routes

Route 1st coll. Total frames Coll. rate (%) #Coll.
w/  wlo w/ w/o w/ w/o w/ w/o
#1 NA 299 610 618 0.00 9.70 0/5 4/5
#2 NA 268 735 675 0.00 12.89 0/5 3/5
#3 NA 203 630 543 0.00 47.98 0/5 4/5
#4 NA 390 720 730 0.00 42.45 0/5 4/5
#5 NA 313 644 757 0.00 52.25 0/5 5/5
#6 NA 383 663 684 0.00 33.97 0/5 4/5
#7 NA 204 626 661 0.00 14.91 0/5 4/5
#8 NA 241 630 680 0.00 54.13 0/5 5/5
Avg/Total NA 287 657 669 0.00 33.54 0/40) 33/40
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Rejuvenation interval

e The shorter intervals enhance driving safety by quickly
recovering compromised models

Rejuvenation

interval
1/~ (s) Ist coll. Total Coll. rate #Coll.
3 NA 610 0.00% 0/5
5 526 627 1.27% 1/5
7 246 574 8.93% 2/5
9 270 632 10.44% 3/5
Avg/Total 347 611 5.16% 6/20
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ML model maintenance




Dataset shift

e The performance of ML models deteriorates when input data
distribution changes

e Sample selection bias
e Non-stationary environment

e Model retraining is essential to maintain long-term performance

https://www.bbc.com/news/world-asia-52677139
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Model retraining strategies

e Availability of the ML system is affected by the frequency of
retraining attempts

e Progressive retraining policy
e ML models are constantly retrained with new data
e Conservative retraining policy
e ML models are retrained when observing performance failure

How can we compare the effectiveness of these retraining policies?

2025/10/21 © 2025 System Dependability Lab
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Availability modeling

e Two-component ML system

e ML system is available when the performance of the
downstream model satisfies threshold 7,

e Formulate a Continuous-time Markov Chain (CTMC)
e System state (u, d)

7N |
Upstream model Downstream model Available

wd = {1, Satisfying the threshold

0, Unacceptable Unavailable
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CTMCs

Progressive Conservative
retraining policy retraining policy
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Policy comparison

e Each policy has a distinctive advantage over the parameter

space
0.76 - . = .
progressive retraining policy
074 i 0.75 - progressive retraining policy
0.72 : -
=070 e _ >0.74
= conservative retraining policy =
0 L]
T 0.68 ©
T g 073
Z 066 = .
0.64 0.72 conservative retraining policy
0.62
0.71
000 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0
MTTF(days) Coverage Rate
Figure: MTTF for Upstream model Figure: Coverage Factor ¢
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Future challenges
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Reliability of generative Al systems

e Quantitative reliability evaluation for Al systems involving ML
models for generative tasks

e System and operation engineering for Q
reliable generative Al systems %

S D
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High availability ML systems

e ML systems’ reliability needs to be maintained for long term

e Degradation issues "

e Model aging
o . ML
Software agllng " VL / 3
e Dependency issues ) N -
 Between multiple ML components ,‘( 3 4
e Reliance on software and hardware W
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Conclusion

 N-version ML architecture for ML system reliability

N

Machine ' Software System Operation
Learning /Engineering’ Engineering Engineering

/

e ML system rejuvenation for safe autonomous driving
e ML model maintenance for high-availability ML systems
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Thank you
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