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20年前
 自律コンピューティング
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G. Kickinger, Autonomic Computing 
an introduction



自律コンピューティングの目的
 増加し続けるシステム運用管理コストの削減
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https://www.lightwaveonline.com/network-
design/article/16649427/controlling-opex-through-optical-technologies



可用性評価の課題
 運用自動化の効果を可用性で定量評価
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現在：機械学習システムの時代
 機械学習を使ったシステムの産業応用が広がる
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自動運転車 ヘルスケア ソフトウェア開発

© 2025 System Dependability Lab



機械学習システムの障害
 推論エラーが深刻なシステム障害や社会問題を引き起こす
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https://bit.ly/3m9kJ8b

Tesla in self-driving mode 
causes 8 vehicle crashes

Facial recognition technology 
jailed a man for days

https://shorturl.at/JIob5

https://shorturl.at/xfqsh

GPT-4V often made mistakes 
when describing the medical image



機械学習システムの信頼性リスク
 機械学習モデルの推論エラー

 分布外入力（Out-Of-Distribution）
 敵対的サンプル（Adversarial Example）

 ソフトウェアやハードウェアの障害
 ソフトウェアバグ
 一時的メモリ障害（Soft Error）
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In-distribution

OOD

Torch/Theano..

Keras/Caffe..

CUDA/cuDNN
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機械学習システム高信頼化のアプローチ
 機械学習モデルの改良だけでなく、アプリケーションやシステムレベ
ルの対処も必要
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機械学習 ソフトウェア
エンジニアリング

システム
エンジニアリング

分布外汎化
敵対的学習 機械学習テスト

デバッグ
冗長化・多重化
安全性モニタ
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Nバージョン機械学習システム
 機械学習の推論を冗長化してエラー出力を抑える
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機械学習
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単一の機械学習モデルを利用する場合 Nバージョン機械学習システムの場合
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モデルの多様化と入力の多様化
 複数のモデルが同時にエラーを出力しないように
 モデル多様化

 異なる機械学習アルゴリズムや学習データを使ってモデルを作成する
 入力多様化

 同じ推論対象に対する異なる入力データを利用する
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入力データ多様化
 機械学習モデルは入力データの違いに敏感

 入力データのわずかな加工で機械学習モデルを騙せる（敵対的サンプル）
→ 逆も起こり得る
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データ加工

推論エラー 認識成功
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Nバージョンプログラミングとの違い
Nバージョンプログラミング Nバージョン機械学習システム

対象 プログラム（仕様に基づいて開
発される）

機械学習モデル（訓練データか
ら学習される）

対処する問題 ソフトウェアのバグ 誤判断
構成要素 2つ以上の機能的に等価なプロ

グラム
1つ以上の同じタスクを実行す
る機械学習モデル

多様化手法 開発チーム、プログラミング言
語、ライブラリ、ツール

学習アルゴリズム、ハイパーパ
ラメータ、学習データ、入力
データ

導入コスト 高い 低い
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画像分類システムでの応用
 3バージョン交通標識分類システム

 3つの加工入力データと3つの異なる
ニューラルネットワークで構成
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3バージョン
システム

単一システム
[Q. Wen, et al. ISSRE2023]
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Nバージョン構成選択の問題
 複数のモデルと異なる入力データが与えられたとき、どのような構成
が最も信頼性を向上させるか？
 どのモデルを使うか？
 どの入力データをどのモデルに与えるか？
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異なる入力データ

origin noise

rotate

異なる機械学習モデル

origin

rotate

Nバージョン構成

信頼性？
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経験則
 画像分類システムの信頼性はNバージョン構成によって異なる

 データセット：MNIST（手書き数字0～9）
 機械学習モデル：深層ニューラルネットワーク（LeNet, AlexNet）
 入力データ多様化：元画像、ノイズ追加画像
 比較器：不一致の場合は出力しない
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Nバージョン構成の信頼性モデル
 異なる入力データと異なるモデルの組み合わせで信頼性が異なる
→ 理論的にどこまで解析できるか？

 分類システムを対象に信頼性モデルを考える
 問題設定
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入力データ：同一の対象に対して2つの異なる入力データを利用可能
機械学習モデル：同一の分類タスクを行う2つの分類モデルを利用可能
比較器のルール：出力結果が一致する場合にのみその結果を出力する
信頼性：システムが誤った結果を出力しない確率
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1バージョン構成の信頼性
 記法

 入力データ：𝑥𝑥𝑖𝑖, 𝑖𝑖 = {1,2, … }
 機械学習モデル：𝑚𝑚𝑗𝑗, 𝑗𝑗 = {𝑎𝑎, 𝑏𝑏, … }
 入力データの標本空間：𝑆𝑆
 機械学習モデル𝑚𝑚𝑗𝑗がエラーとなる入力データの集合： 𝐸𝐸𝑗𝑗 ⊂ 𝑆𝑆

 機械学習モデル𝑚𝑚𝑗𝑗と入力データ𝑥𝑥𝑖𝑖を組み合わせた場合の信頼性
1 − P[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗]
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𝐸𝐸𝑗𝑗𝑆𝑆

𝑥𝑥𝑖𝑖
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2バージョン構成のアーキテクチャ
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𝑚𝑚𝑎𝑎𝑥𝑥1

𝑚𝑚𝑎𝑎𝑥𝑥2

𝑚𝑚𝑏𝑏𝑥𝑥1

𝑚𝑚𝑏𝑏𝑥𝑥2

単一モデル二重入力
(Single model double input: SMDI)

𝑚𝑚𝑎𝑎𝑥𝑥1

𝑚𝑚𝑏𝑏

𝑚𝑚𝑎𝑎𝑥𝑥2

𝑚𝑚𝑏𝑏

二重モデル単一入力
(Double model single input: DMSI)

二重モデル二重入力
(Double model double input: DMDI)

𝑚𝑚𝑎𝑎𝑥𝑥1

𝑚𝑚𝑏𝑏𝑥𝑥2

𝑚𝑚𝑏𝑏𝑥𝑥1

𝑚𝑚𝑎𝑎𝑥𝑥2

6通り

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚𝑎𝑎; 𝑥𝑥1, 𝑥𝑥2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑚𝑚𝑏𝑏; 𝑥𝑥1, 𝑥𝑥2)

𝐷𝐷𝑀𝑀𝑆𝑆𝐼𝐼(𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏; 𝑥𝑥1)

𝐷𝐷𝑀𝑀𝑆𝑆𝐼𝐼(𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏; 𝑥𝑥2)

𝐷𝐷𝑀𝑀𝐷𝐷𝐼𝐼(𝑚𝑚𝑎𝑎; 𝑥𝑥1,𝑚𝑚𝑏𝑏; 𝑥𝑥2)

𝐷𝐷𝑀𝑀𝐷𝐷𝐼𝐼(𝑚𝑚𝑎𝑎; 𝑥𝑥2,𝑚𝑚𝑏𝑏; 𝑥𝑥1)
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2バージョン構成の信頼性
 エラー確率P[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗]が独立な場合

 2バージョン構成のエラー確率は1バージョン構成のエラー確率の積
1 − P[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] � P[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]

 実際はエラー確率は独立ではない
 エラー集合𝐸𝐸𝑗𝑗は共通部分を持つ可能性がある
 入力データ𝑥𝑥𝑖𝑖の分布は同一とは限らない
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𝐸𝐸𝑎𝑎𝑆𝑆

𝑥𝑥1
𝑥𝑥2

𝐸𝐸𝑏𝑏
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多様性指標の導入
 2つの機械学習モデルを用いる場合、エラー集合に依存関係がある

 二重モデル単一入力システム(DMSI)の信頼性
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エラーの共通部分(モデル類似度)

機械学習モデル𝑚𝑚𝑎𝑎 ,𝑚𝑚𝑏𝑏が誤出力となる入力データ𝑥𝑥𝑖𝑖の標本空間𝑆𝑆の部分集合
をそれぞれ𝐸𝐸𝑎𝑎 , 𝐸𝐸𝑏𝑏とし、エラーの共通部分𝛼𝛼𝑏𝑏|𝑎𝑎,𝑖𝑖 ∈ [0,1]を以下で定義する。

𝛼𝛼𝑏𝑏|𝑎𝑎,𝑖𝑖 = 𝑃𝑃 𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎 =
𝑃𝑃 𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏
𝑃𝑃 𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎

.

ただし𝑃𝑃 𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎 > 0とする。

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 = 1 − 𝛼𝛼𝑏𝑏|𝑎𝑎,1 � 𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎
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多様性指標の導入2
 2つの入力データを用いる場合、2つのデータ分布は独立ではない

 単一モデル二重入力システム(SMDI)の信頼性
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エラーの共起度(入力類似度)

同じ標本空間𝑆𝑆から抽出した機械学習モデル𝑚𝑚𝑗𝑗に対する入力データを𝑥𝑥1, 𝑥𝑥2と
し、エラーの共起度𝛽𝛽𝑗𝑗,2|1 ∈ [0,1]を以下のように定義する。

𝛽𝛽𝑗𝑗,2|1 = 𝑃𝑃𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑗𝑗|𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗 =
𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗, 𝑥𝑥2 ∈ 𝐸𝐸𝑗𝑗

𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗
.

ただし𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗 > 0とする。

𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎,1∩2 = 1 − 𝛽𝛽𝑎𝑎,2|1 � 𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎
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二重モデル二重入力システムの信頼性
 二重モデル二重入力(DMDI)システムの信頼性はモデルの依存関係と入
力データ分布の重なりの両方の影響を受ける

 𝐷𝐷𝑀𝑀𝐷𝐷𝐼𝐼(𝑚𝑚𝑎𝑎; 𝑥𝑥1,𝑚𝑚𝑏𝑏; 𝑥𝑥2)の信頼性
 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 = 1 − 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 � 𝛽𝛽𝑎𝑎,2|1 + 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩�2 � 1 − 𝛽𝛽𝑎𝑎,2|1 � 𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎

入力類似度とモデル類似度に関連したパラメータで特徴づけられる
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𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 = 𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎
𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩�2 = 𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎
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信頼性モデルから導かれる性質
 モデルの類似度と入力データの類似度が条件付き独立と仮定する場合

 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 = 𝛼𝛼𝑏𝑏|𝑎𝑎,2 and 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩�2 = 𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2、𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 、 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎,1∩2の中で最も信頼性が高いアーキ
テクチャは𝛼𝛼𝑏𝑏|𝑎𝑎,2 と 𝛽𝛽𝑎𝑎,2|1の値から以下で求まる。

性質

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2, 𝑖𝑖𝑖𝑖 𝜔𝜔 𝛼𝛼𝑏𝑏 𝑎𝑎2 , 𝛽𝛽𝑎𝑎,2|1 − 𝛼𝛼𝑏𝑏 𝑎𝑎2 ⋅ 𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑎𝑎,2|1 ≥ 𝛼𝛼𝑏𝑏 𝑎𝑎2 ⋅
𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏
𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎

,

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏,1∩2, 𝑖𝑖𝑖𝑖 𝜔𝜔 𝛼𝛼𝑏𝑏 𝑎𝑎2 , 𝛽𝛽𝑎𝑎,2|1 − 𝛽𝛽𝑎𝑎,2|1 ⋅ 𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽𝑎𝑎,2|1 ≤ 𝛼𝛼𝑏𝑏 𝑎𝑎2 ⋅
𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏
𝑃𝑃 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎

,

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

ただし𝜔𝜔 𝛼𝛼𝑏𝑏|𝑎𝑎,2, 𝛽𝛽𝑎𝑎,2|1 = 𝑃𝑃 𝑥𝑥1∈𝐸𝐸𝑎𝑎
1−𝑃𝑃 𝑥𝑥2∈𝐸𝐸𝑎𝑎

⋅ 𝛼𝛼𝑏𝑏|𝑎𝑎,2 � 𝛽𝛽𝑎𝑎,2|1 − 𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 + 𝑃𝑃 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏 � 1 − 𝛽𝛽𝑎𝑎,2|1
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信頼性モデルから導かれる性質（続き）
 モデルの類似度と入力データの類似度が条件付き独立と仮定する場合
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𝛼𝛼𝑏𝑏|𝑎𝑎,2 と 𝛽𝛽𝑎𝑎,2|1のバランスで最も良い
アーキテクチャが変わる

現実的なモデルの類似度と入力
データの類似度の範囲では
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2が好ましい選択
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3バージョン構成のアーキテクチャ
 3つの推論結果の多数決で最終出力を決定する
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単一モデル三重入力
(Single model triple input: SMTI)

三重モデル単一入力
(Triple model single input: TMSI)

三重モデル三重入力
(Triple model triple input: TMTI)

𝑚𝑚𝑎𝑎 

𝑚𝑚𝑎𝑎 

𝑚𝑚𝑎𝑎 

𝑚𝑚𝑎𝑎 

𝑚𝑚𝑏𝑏 

𝑚𝑚𝑐𝑐 

𝑚𝑚𝑎𝑎 

𝑚𝑚𝑏𝑏 

𝑚𝑚𝑐𝑐 
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3バージョンアーキテクチャの信頼性比較
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モデルの類似度はTMSIとTMTIの信頼性に影響を与え、
入力の類似度はSMTIとTMTIの信頼性に影響を与える

© 2025 System Dependability Lab

モデルの類似度𝛼𝛼𝑏𝑏|𝑎𝑎,1の影響を評価 入力の類似度𝛽𝛽𝑎𝑎,2|1の影響を評価





自動運転向け物体検出システムへの応用
 物体検出モデルが障害や攻撃によって精度が低下すると仮定

 正常状態 → 劣化状態 → 故障状態
 N個の物体検出モデルを用いて信頼性を向上させる
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[Q. Wen, et al. AISafety2024]

劣化状態では正しい物体検出
ができない
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自動運転の安全性評価
 評価環境

 自動運転のシミュレータCarla
 フレームワークOpenCDA

 オブジェクト検出モデル
 YOLOv5s6, YOLOv5m6, YOLOv5l6

 評価指標
 衝突率
 最初の衝突までのフレーム数
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Town03 of the CARLA simulator
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Carlaによる実験
 故障注入により劣化モデルを生成

 PyTorchFIでYOLOv5のパラメータをランダムに変更
 劣化モデルによる自動運転では衝突事故が発生
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正常モデルでの運転 劣化モデルでの運転
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3バージョン物体検出システムの評価
 3バージョン構成であれば、1つのモデルが劣化状態になっても自動運
転の安全性を維持できる
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劣化したモデルの数

1つのモデルの劣化であれば衝突を防げる
© 2025 System Dependability Lab



ソフトウェア開発自動化への応用
 APIメソッドシーケンス推薦

 IDEなどで提供されるプログラム開発支援機能

2025/11/7 © 2025 System Dependability Lab 33

自然言語クエリ

ソースコード
コンテキスト

機械学習モデル

APIメソッド
シーケンス予測

学習データはロングテール
正解率は46%程度

ヘッド テール

APIメソッド



多様な機械学習モデルによるAPI推薦
 3つの機械学習モデルで同じ推薦タスクを実行
 正解率の比較

 CodeBERT 38.2%
 CodeT5       36.6%
 MulaRec 46.3%

 機械学習モデルによって正解しやすいAPIは
異なる
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組み合わせることで信頼性向上効果を期待できる



提案手法
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訓練データセット

自然言語クエリ

ソースコード
コンテキスト

各機械学習モデルによる
APIメソッドシーケンス
推薦

APIメソッドの
正解数を分析 モデル

プロファイル

APIメソッドシーケンス1
APIメソッドシーケンス2

:
APIメソッドシーケンスN

自然言語クエリ

ソースコード
コンテキスト

テール判定

複数機械学習モデル
による推薦

単一機械学習モデル
による推薦

APIメソッドシーケンス

APIメソッドシーケンス
または出力なし

a.  モデルプロファイルステップ

b. 推論ステップ

ヘッド
テール

しきい値に基づき信頼性の
低い推薦結果は棄却



評価結果
 APIシーケンス推薦タスクの公開データセット18,500件で評価

 出力棄却率のしきい値を上げると正解率と棄却率が増加する

2025/11/7 © 2025 System Dependability Lab 36

ベースライン 46.3%
（MulaRec正解率）

正解率= 正解数
出力数

棄却率= 出力数
入力数

出力棄却率のしきい値

信頼性が向上

提案手法



研究の展望
 システム運用管理タスクへの応用

 異常検知システム
 異なるセンサーや異なるレイヤの情報源からの推論結果を統合

 障害原因特定・修復プラン生成
 機械学習システムの可用性

 長期間稼働する機械学習システムの性能や信頼性を維持
 モデルの性能劣化検知
 モデルの再学習
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時間

予測
精度

モデル性能劣化

検知
再学習
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