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1. Introduction – Machine Learning Systems

Machine learning (ML) models have
been used in many intelligent
software systems.

Face recognition
Medical diagnosis
Autonomous robots and vehicles
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1. Introduction – Reliability Issues of ML Systems

Outputs of ML models for real-world
input data are not always correct

Error outputs of ML models may
induce undesirable consequences (e.g.,
traffic accidents in automated driving)
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2. Related Work – Reliability Issues

 Approaches to ML system reliability improvement 
 Data validations [1]

 Detect real-world error-inducing corner cases at runtime

 Require a white box model for deep neural networks

 Safety monitors [2]
 Detect out-of-distribution data at runtime

 Need to be trained together with the ML model in advance

 Redundant architecture [3-4]

 Achieve improved reliability by a simple redundancy scheme with diversity
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2. Related Work – On Reliable ML Systems 

N-version ML system approach

Multiple ML models [5]

Diversified input data [7]

 Estimation of diversity parameters
 The impacts of estimated diversity parameters on

system reliability

Issue of parameter estimation 
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2. Related Work – Diversity Measures

Diversity Metrics
 Mutual error rate [6]
 Coverage of errors [7]
 Gini coefficient and the Shannon equitability index [8]

 The metrics are not applicable for diversity in different input
data sources.

 The joint impact of model diversity and input diversity on
system reliability is not discussed.
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 Double model with double input system (DMDI)
 Triple model with single input system (TMSI)
 Single model with triple input system (SMTI) 
 Triple model with triple input system (TMTI) 

3. Reliability Model – N-version ML Architectures
Two-version and three-version ML architectures
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 R: Reliability of a three-version N-version Programming model
 𝜶𝜶: A dependent failure parameter
 𝒇𝒇: The failure probability of each version

A conventional reliability model for a three-version system

3. Reliability Model – Conventional Reliability Model 

𝑅𝑅 = 1 − 3𝛼𝛼𝛼𝛼 1 − 𝛼𝛼 + 𝛼𝛼2𝑓𝑓 = 1 − 𝛼𝛼𝛼𝛼 3 − 2𝛼𝛼

 Shortcomings
 The ratio of the dependence is homogeneous which may not be true in

reality.
 The dependent failure parameter is not enough to represent the dependence

of input data.
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 𝜷𝜷𝐢𝐢,𝐬𝐬|𝒕𝒕 : Input diversity- Conjunction of errors 𝛽𝛽i,s|𝑡𝑡 ∈ 0,1
 𝒙𝒙𝒔𝒔 , 𝒙𝒙𝒕𝒕: Input data to ML models from different data sources (i.e., 𝑠𝑠 ≠ 𝑡𝑡)
 A smaller conjunction value is better-the probability of a mutual error

becomes small

 𝜶𝜶𝒊𝒊,𝒋𝒋 : Model diversity- Intersection of errors 𝛼𝛼𝑖𝑖,𝑗𝑗 ∈ 0,1
 𝑬𝑬𝒊𝒊 , 𝑬𝑬𝒋𝒋 : The input sets that make ML models 𝑚𝑚𝑖𝑖 and 𝑚𝑚𝑗𝑗 output error
 A smaller intersection value is better-ML models are unlikely to reach a

mutual error

3. Reliability Model – Diversity Metrics [4]

𝛼𝛼𝑖𝑖,𝑗𝑗=
𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝑖𝑖 ,𝐸𝐸𝑗𝑗

𝛽𝛽i,s|𝑡𝑡 = 𝑃𝑃𝑃𝑃 𝑥𝑥𝑠𝑠 ∈ 𝐸𝐸𝑖𝑖| 𝑥𝑥𝑡𝑡 ∈ 𝐸𝐸𝑖𝑖
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3. Reliability Model – Reliabilities [4][9] 

 Reliability of SMTI:
𝑹𝑹𝟏𝟏,𝟑𝟑 𝒎𝒎𝟏𝟏;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑 = 1 − (𝛽𝛽1,2|1𝑝𝑝1 + 𝛽𝛽1,3|1𝑝𝑝1 + 𝛽𝛽1,3|2𝑝𝑝2′ − 2𝛽𝛽1,2|1𝛽𝛽1,3|1𝑝𝑝1)

𝑹𝑹𝟑𝟑,𝟑𝟑 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑
= 1 − [𝑝𝑝2,2 𝑚𝑚1,𝑚𝑚2; 𝑥𝑥1, 𝑥𝑥2 + 𝑝𝑝2,2 𝑚𝑚1,𝑚𝑚3; 𝑥𝑥1, 𝑥𝑥3 + 𝑝𝑝2,2 𝑚𝑚2,𝑚𝑚3; 𝑥𝑥2 , 𝑥𝑥3 −
2𝑝𝑝2,2 𝑚𝑚1,𝑚𝑚2; 𝑥𝑥1, 𝑥𝑥2 � 𝑝𝑝2,2 𝑚𝑚1,𝑚𝑚3; 𝑥𝑥1, 𝑥𝑥3 /𝑝𝑝1]

 Reliability of TMTI:

 Reliability of DMDI:
𝑹𝑹𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 1 − 𝛽𝛽1,2|1 � 𝛼𝛼1,2 + 1 − 𝛽𝛽1,2|1 � 𝑝𝑝2 −𝛼𝛼1,2�𝑝𝑝1

1−𝑝𝑝1
� 𝑝𝑝1

𝑹𝑹𝟑𝟑,𝟏𝟏(𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏)
= 1 − (𝛼𝛼1,2 � 𝑝𝑝1 + 𝛼𝛼1,3 � 𝑝𝑝1 + 𝛼𝛼2,3 � 𝑝𝑝2 − 2𝛼𝛼1,2 � 𝛼𝛼1,3 � 𝑝𝑝1)

 Reliability of TMSI:
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𝑹𝑹𝟑𝟑,𝟏𝟏(𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏)
= 1 − (𝛼𝛼1,2 � 𝑝𝑝1 + 𝛼𝛼1,3 � 𝑝𝑝1 + 𝛼𝛼2,3 � 𝑝𝑝2 − 2𝜶𝜶𝟏𝟏,𝟐𝟐 � 𝜶𝜶𝟏𝟏,𝟑𝟑 � 𝒑𝒑𝟏𝟏)

3. Reliability Model – Variants of Reliability Models

𝒕𝒕𝟏𝟏 = 𝜶𝜶𝟏𝟏,𝟐𝟐 � 𝜶𝜶𝟏𝟏,𝟑𝟑 � 𝒑𝒑𝟏𝟏
𝒕𝒕𝟐𝟐 = 𝜶𝜶𝟏𝟏,𝟐𝟐 � 𝜶𝜶𝟐𝟐,𝟑𝟑 � 𝒑𝒑𝟏𝟏
𝒕𝒕𝟑𝟑 = 𝜶𝜶𝟏𝟏,𝟑𝟑 � 𝜶𝜶𝟐𝟐,𝟑𝟑 � 𝒑𝒑𝟏𝟏

𝒕𝒕𝟒𝟒 =
𝒕𝒕𝟏𝟏 + 𝒕𝒕𝟐𝟐 + 𝒕𝒕𝟑𝟑

𝟑𝟑
𝒕𝒕𝟓𝟓 = 𝟑𝟑 𝒕𝒕𝟏𝟏𝒕𝒕𝟐𝟐𝒕𝒕𝟑𝟑

Five variants in the evaluation of TMSI reliability
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 Objective
 Theoretical investigation of the reliability of N-version ML systems with model

diversity and input diversity.

 Lack of discussion on the effectiveness of diversity metrics for reliability prediction.

Conduct experiments on traffic sign recognition tasks using deep neural networks

 Evaluate the reliability of three-version traffic sign classifier architectures

Compare observed reliability with predicted reliability based on estimated diversity
parameter values.

 Empirical Experiment

4. Objective
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 Model Diversity
 LeNet
 AlexNet
 ResNet50

 Input Diversity

 Original data
 Noise-added data
 Rotated data
(rotate 5 degrees counterclockwise)

5. Experiment Configuration

A three-version system by TMTI architecture
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 Datasets
Five different traffic sign datasets
 Chinese Traffic Sign Dataset (CTSD)

 German Traffic Sign Recognition Benchmark (GTSRB)

 Traffic Sign Classification Dataset (TSCD)

 Turkey Traffic Sign (TTS)

 Arabic Traffic Signs (ATS)

5. Experiment Configuration
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Does the implementation of a three-version system architecture
effectively enhance reliability?

5. Experiment Results – Research Question 1

Observation 1. Three-version ML system architectures, especially the TMTI architecture,
have the potential to efficiently improve system reliability compared to single models.
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How can the reliability models using diversity parameters estimate
well the reliability of traffic sign classifier architectures?

5. Experiment Results – Research Question 2

DMDI residual between observed results and model results

Observation 2. The prediction residuals are mostly less than 0.017 across five
data sets in most architectures except the SMTI architecture.

 𝒆𝒆 (Prediction residual) = 𝑹𝑹𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 − 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
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 Five variants in the evaluation of TMTI reliability
𝑹𝑹𝟑𝟑,𝟑𝟑 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑
= 1 − [𝑝𝑝2,2 𝑚𝑚1,𝑚𝑚2; 𝑥𝑥1, 𝑥𝑥2 + 𝑝𝑝2,2 𝑚𝑚1,𝑚𝑚3; 𝑥𝑥1, 𝑥𝑥3 + 𝑝𝑝2,2 𝑚𝑚2,𝑚𝑚3; 𝑥𝑥2 , 𝑥𝑥3 −
2𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 � 𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏,𝒙𝒙𝟑𝟑 /𝒑𝒑𝟏𝟏]

How does the last term of the three-version reliability model impact on
the reliability prediction?

5. Experiment Results – Research Question 3

𝒕𝒕𝟏𝟏 =
𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 � 𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏,𝒙𝒙𝟑𝟑

𝒑𝒑𝟏𝟏

𝒕𝒕𝟐𝟐 =
𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟐𝟐;𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 � 𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟐𝟐,𝒎𝒎𝟑𝟑;𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑

𝒑𝒑𝟏𝟏

𝒕𝒕𝟑𝟑 =
𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟏𝟏,𝒎𝒎𝟑𝟑;𝒙𝒙𝟏𝟏,𝒙𝒙𝟑𝟑 � 𝒑𝒑𝟐𝟐,𝟐𝟐 𝒎𝒎𝟐𝟐,𝒎𝒎𝟑𝟑;𝒙𝒙𝟐𝟐,𝒙𝒙𝟑𝟑

𝒑𝒑𝟏𝟏

𝒕𝒕𝟒𝟒 =
𝒕𝒕𝟏𝟏 + 𝒕𝒕𝟐𝟐 + 𝒕𝒕𝟑𝟑

𝟑𝟑
𝒕𝒕𝟓𝟓 = 𝟑𝟑 𝒕𝒕𝟏𝟏𝒕𝒕𝟐𝟐𝒕𝒕𝟑𝟑
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Observation 3. The residuals of five variants of TMSI, SMTI, and TMTI
reliability predictions are equally effective. No variant shows evident superiority
over the others.
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 Residual between observed results and model results for TMTI

5. Experiment Results – Research Question 3
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How many samples are required to obtain good estimates of the
diversity parameter values?

5. Experiment Results – Research Question 4

 The trends of variances of estimated diversity parameters over the number 
of samples

Observation 4. For some data sets, we can obtain fairly good estimates of diversity
parameters by a relatively small number of samples (less than a few thousand
samples). In such cases, we may predict the reliability of three-version systems by
measuring the diversities from early samples.
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5. Experiment Results – Discussion 

Suggestions for reliable ML system design
Adopt a three-version architecture, specifically emphasizing

TMTI, for improved system reliability.

Apply reliability models to select the most reliable three-version
architecture based on observed diversities.

 For the architecture comparison purpose, a relatively small
number of samples may be satisfactory for obtaining reasonable
estimates of diversity parameters.
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5. Experiment Results – Discussion 

Our observations are limited to traffic sign image recognition tasks.

Decision schemes and voting rules for other tasks (e.g., object
detection) require further investigation.

Other system design factors, such as performance, resource
consumption, energy, and cost need to be considered together with
reliability.

Limitations
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6. Conclusion & Future Work 

We investigate the reliability of N-version ML systems and the
associated diversity metrics estimated from the empirical data.

We focus on traffic sign recognition tasks and conduct experiments
on five different traffic sign datasets.

We answer five research questions and give suggestions for reliable
ML system design.

Conclusion

Future work
Explore other ML tasks
Consider the cost and performance of N-version ML systems
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