
Memory Degradation Analysis
in Private and Public Cloud Environments

Ermeson Andrade∗, Fumio Machida†, Roberto Pietrantuono‡, Domenico Cotroneo‡
∗Department of Computing, Federal Rural University of Pernambuco, Recife, Brazil, ermeson.andrade@ufrpe.br

†Department of Computer Science, University of Tsukuba, Tsukuba, Japan, machida@cs.tsukuba.ac.jp
‡University of Naples Federico II, Naples, Italy, {roberto.pietrantuono, cotroneo}@unina.it

Abstract—Memory degradation trends have been observed
in many continuously running software systems. Applications
running on cloud computing can also suffer from such memory
degradation that may cause severe performance degradation or
even experience a system failure. Therefore, it is essential to
monitor such degradation trends and find the potential causes to
provide reliable application services on cloud computing. In this
paper, we consider both private and public cloud environments
for deploying an image classification system and experimentally
investigate the memory degradation that appeared in these
environments. The degradation trends in the available memory
statistics are confirmed by the Mann-Kendall test in both cloud
environments. We apply causal structure discovery methods to
process-level memory statistics to identify the causality of the ob-
served memory degradations. Our analytical results identify the
suspicious processes potentially leading to memory degradations
in public and private cloud environments.

Index Terms—Causality analysis, Memory degradation, Public
cloud, Private cloud, Software aging

I. INTRODUCTION

Long-running artificial intelligence (AI) applications such
as real-time image analysis or video recognition systems can
benefit from the support of cloud computing infrastructure. As
for such an infrastructure, deployers could use public clouds,
which utilize a shared infrastructure, or private clouds, which
utilize an organization’s own infrastructure. In some contexts,
private clouds are preferred since they reside on a company’s
own infrastructure, typically firewall protected and physically
secured. Since private clouds are owned by the organization,
there is no sharing of infrastructure, no multi-tenancy issues,
and zero latency for local applications and users.

One of the concerns in the use of cloud computing for
AI services is the software reliability issue during a long-
time operation. Software aging in cloud computing systems
has been experienced and analyzed in many studies [1]–[4].
An image classification system running on a public cloud
system also can suffer from memory-related software aging
[1]. While the previous works conducted statistical analysis
on the measurement data and confirmed the existence of the
degradation trends [2], [5], [6], the causality of software aging
observed in cloud systems has not been investigated in depth.
In particular, for public cloud systems, the entire software
architecture and its resource management mechanism are not
fully open to users, leading to a challenge in identifying root
causes.

In order to investigate the causality of software aging
in cloud computing environments, we conduct a set of ex-
periments targeting an image processing system deployed
on private or public cloud systems and statistically analyze
the processes’ memory consumption contributing to software
aging. For the private cloud system, We build a CloudStack
environment, while for the public system we employ Google
cloud platform. On the cloud systems, image classification
tasks are processed continuously for 72 hours with three
different workload intensities (i.e., low, middle, and high). We
collect several system metrics and apply the Mann-Kendall
test [7] with Sen’s slope estimate [8] to confirm the trends in
the memory consumption both in the public and private cloud
systems. Next, we delve into the potential causes of mem-
ory degradation issues by investigating the causality relation
between processes’ memory consumption and the observed
memory degradation. The results show statistically signifi-
cant memory degradation trends in both public and private
clouds. The causality analysis results indicate the processes
most likely to be causally related to the memory degradation
for private and public cloud environments. We find that the
software aging in private cloud is workload-sensitive, while the
software aging in public cloud is not sensitive to workloads.
Our findings as well as the causality analysis method can be
useful for users or developers in the decision-making process
of counteracting various software aging issues encountered in
cloud computing environments.

The rest of the paper is organized as follows. Section II
describes the related work for software aging analysis. Section
III clarifies the research questions. Section IV details our
experiments. Section V shows the results of the experiments
and statistical analysis. Section VI presents the conclusions
and briefly introduces future work.

II. RELATED WORK

In the past decade, we have witnessed growing attention
to software aging on cloud-based systems. According to the
recent survey report [3], almost one hundred papers in the
last ten years address cloud-computing-related software aging
issues. Software aging problems in cloud systems are mainly
concerned about its adverse impacts on user-perceived quality
of services (e.g., availability, reliability, and performance),
resulting in loss of users and the market.



The studies on software aging problems are broadly divided
into model-based and measurement-based approaches. Many
researchers have investigated software aging in cloud comput-
ing systems, or more generally in virtualized systems, by ex-
ploiting stochastic models such as stochastic Petri nets (SPN)
and stochastic reward nets (SRN) [9]–[12], continuous-time
Markov chains (CTMC) [13], [14], semi-Markov processes
(SMP) [15], [16], as well as combinatorial models such as
reliability block diagrams (RBD) [17] and dynamic fault trees
(DFT) [18]. In these works, the cloud architectures – including
virtual machines (VMs), virtual machine monitor (VMM), and
physical host(s) - and the associated rejuvenation strategies
are modeled with the aim of computing the optimal time
for rejuvenation and of fine-tuning the adopted rejuvenation
techniques.

On the other side, measurement-based approach has been
employed in many studies for empirically characterizing soft-
ware aging phenomena in cloud computing systems. In our
previous work [1], we use several statistical methods to
characterize the software aging in an image classification
system deployed on a Google Cloud Computing. In [2],
various regression models are used to characterize the software
aging on the Eucalyptus cloud computing. A similar statistical
analysis is also conducted for software aging analysis in IBM
cloud controller systems [6]. Nevertheless, there are only a
few works that provide a statistical analysis for identifying
the root causes of software aging, and none of them focus on
cloud-based systems. In [19], the authors study how software
aging impacts different versions and vendors of Android. The
study also provides the insight that bloated Java containers
are a significant contributor to software aging. Alonso et al.
[20] develop a framework based on Aspect Programming to
monitor the resources used by every application component.
The approach is based on the idea of injecting their solution
into J2EE architectures at runtime to determine the component
root cause of software aging.

The statistical analysis method and the aging indicators
considered in this paper are similar to the existing studies.
However, in contrast to the existing studies, we also conduct
the causality analysis to process memory consumption to find
the suspicious processes contributing to memory degradations.

III. RESEARCH QUESTIONS

The objective of our experimental study is to investigate
the potential software aging problem in AI services running
on private and public cloud computing environments. As an
example of an AI application, we consider a real-time image
classification system using machine learning. Since the root
cause of software aging is the primary interest, we plan the
experiments along with the following research questions.
RQ1: Does an image classification system running on public
and private cloud environments encounter any software aging
problems?
RQ2: What are the potential causes of software aging if
any software aging phenomena are observed in the cloud
systems?

RQ3: How software aging manifestations and causalities are
different between private and public cloud?

To answer the above questions, we conduct the experiments
and statistical analysis that are detailed in the next section.

IV. EXPERIMENTS

In this section, first we explain the cloud-based systems used
in our experiments. Next, experimental campaign of our stress
tests are detailed. Then, the collected metrics are explained.
Finally, the statistical analysis methods are introduced.

A. Setup

Following our previous study that showed memory degrada-
tion in a cloud system [1], we use the same image classification
program to further investigate the potential causes of software
aging in cloud systems. We use MNIST handwritten digit
dataset [21] and assign digit recognition tasks for the image
classifier. The image classifier is implemented by Python with
Keras [22] that is used to build a neural network for classifying
handwritten digits. The constructed neural network consists
of three layers with 64 filters each, using the Rectified Linear
Units (ReLU) for activation. The output layer is a Dense layer
with 10 nodes and Softmax activation function. Dropout with
probability of 0.2 was used on the fully connected layers. We
compiled the model with categorical crossentropy loss and the
adam optimizer. Note that we do not focus on the accuracy
of the classifier, but rather look at the degradation of system
performance during the continuous operation of classification
tasks. In the experiments, input images are generated on a
client device and are sent periodically to a virtual server that
contains the image classifier. The virtual server is deployed
either on a public cloud or a private cloud. For the public
cloud system, we use a VM instance from Google’s cloud
infrastructure. For the private cloud system, we construct a
CloudStack platform in a local environment and create a VM
instance for executing the image classifier. We do not execute
any other VM instances on the same physical machine. In
the both cloud systems, the client device acts as a workload
generator, which is a program written in Python 3, to generate
samples using the MNIST test dataset. The specifications of
the system components are given as follows:

• Client device: Apple MacBook Air 11-in, Intel Core i5
1.60GHz, 4 GB, 64 GB, Mac OS X Lion 10.7.

• Google virtual machine: n1-standard-1 (1 vCPUj, 3.75
GB), Debian GNU/Linux 10 located in us-central1-a.

• CloudStack server: Apache CloudStack 4.13.1.0, AMD
A8-5500 Quad Core 3.2GHz, 7 GB, 500 GB, CentOS
Linux 7.

• CloudStack virtual machine: Medium instance, 1 GB,
Ubuntu 20.04.2.0

B. Stress tests

In order to accelerate potential software aging phenomena
in cloud systems, we plan to execute stress tests using the



workload generator. We apply three different workload inten-
sities for the image classification system: low workload (one
image is sent every second), medium workload (one image is
sent every 0.5 seconds) and high workload (one image is sent
every 0.1 seconds). For the sake of comparative study, we also
run the systems with no workload. For each experiment, we
execute the system for 72 hours and measure several system
metrics. As a result, we have 4 long-running test results for
both cloud systems, resulting in 8 test results in total.

C. Metrics

For each experiment, we collect system monitoring data and
analyze aging indicators. The aging indicators refer to system
variables that can be directly measured and can be related to
the software aging phenomena [23]. Even though we collect
both user-perceived and system-related aging indicators, user-
perceived aging indicators proved to be irrelevant for our anal-
ysis, as they did not show any indication of aging. Therefore,
in this work, we only consider system-related aging indicators.
For system-related indicators, we primarily collect memory
depletion indicators, specifically, the total available memory
and the resident set size (RSS) of every process running in
the system. Our data set also contains metrics related to the
CPU usage and I/O statistics, but the observed variations are
negligible compared to memory-related indicators. Hence, they
are not further considered in the following analysis.

D. Analysis

For statistical analysis to detect potential software aging
phenomena, we adopt the conventional Mann–Kendall test
(MKT) [7] to analyze the trends of aging indicators, and the
Sen’s slope estimate [8] to calculate the magnitude of the
trends. The Mann-Kendall analysis checks the null hypothesis
(H0) that there is no trend in the time series data, while
the alternative hypothesis (H1) indicates an upward or a
monotonic downward trend in the data. If the p-value of the
test is lower than the significance level (α =0.05), then there is
statistically significant evidence that a trend is present in the
time series data. Once detected the presence of a trend, the
Sen’s slope estimate is obtained to measure the magnitude of
the trend. It is computed as the median of all pairwise slopes
between each pair of points in the data set, so that a positive
Sen’s slope implies a positive trend, while a negative Sen’s
slope means a negative trend.

Beside aging trends detection and estimation, we run a
causal analysis to identify which process is more likely to
be causally related to the possible consumption of memory.
The aim is to discover causal relations by analyzing statistical
properties of the data, which is known as causal structure
discovery (CSD). Algorithms in this area aim to infer possible
cause-effect relations between sets of variables by means of
repeated conditional independence tests between variables and
then to represent the resulting relation by directed graphi-
cal causal models (DGCM). They therefore can be seen as
methods for statistical estimation of parameters describing a
graphical causal structure.

We adopt GFCI [24], a combination of Greedy Equivalence
Search (GES) [25] and Fast Causal Inference (FCI) [26],
which are two well known algorithms covering the two main
approaches in this area: score-based and constraint-based
algorithms. GFCI uses GES to build the graph and FCI to
prune the graph and find the orientations between the nodes.
GFCI has proved to be more accurate in many simulations
than the original FCI algorithm. More details can be found in
[27].

V. RESULTS

In this section, we present the results of the experiments and
the statistical analysis we performed to answer the research
questions.

A. Memory trend analysis

To answer RQ1, first we analyze the trends observed in
the available memory in public and private cloud systems.
Figure 1 shows the available memory for the public cloud
experiments during the 72 hours duration. For all the workload
levels (low, middle and high) including the none workload
case, the available memory sizes are decreasing over time.
Table I summarizes the slopes and the p-value of the MKT
for the four workload settings, confirming the presence of
statistically significant trends, with medium and high workload
being the most severe ones.

0 10 20 30 40 50 60 70

31
00

32
00

33
00

34
00

Time (hour)

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

High
Middle
Low
None

Fig. 1: Available Memory Analysis (Public Cloud).

TABLE I: Public cloud: Slope (KB/h) and p-value of MKT.

Workload Slope (KB/h) p-value

High -3.06e+02 7.68e-24
Middle -3.93e+02 8.64e-30
Low -1.30e+02 7.78e-31
None -3.68e+02 2.76e-29



On the other hand, Figure 2 shows the trend of available
memory for the private cloud experiments during the 72 hours
duration. In this case, only high workload scenario exhibits a
clear decreasing trend in the available memory. Table II shows
the slopes and the p-value of the MKT for the four workload
settings. Again, we observe statistically significant degradation
trend of available memory in the high-workload scenario.
However, the other scenarios do not have much impact on
memory degradation.

0 10 20 30 40 50 60 70

10
0

20
0

30
0

40
0

Time (hour)

A
va

ila
bl

e 
M

em
or

y 
(M

B
)

High
Middle
Low
None

Fig. 2: Available Memory Analysis (Private Cloud).

TABLE II: Private cloud: Slope (KB/h) and p-value of MKT.

Workload Slope (KB/h) p-value

High -4.37e+03 2.33e-24
Middle 2.43e+03 3.04e-14
Low 1.36e+03 8.48e-12
None 2.53e+03 9.35e-19

In summary, we observe statistically significant memory
degradation trends both in public and private clouds. However,
the trends are not consistent across the different workload
intensities. In particular, for the private cloud system, the
memory degradation trend is observed only for high workload
scenario, implying that software aging may occur only at a
certain level of workload intensity.

B. Causality analysis

Since we observed suspicious memory aging trends in both
cloud systems in High workload cases, our next question is
what are the potential causes of memory degradations (RQ2).
To answer this question, we conducted the causality analysis
on the process-level memory statistics. We run the GFCI
algorithm introduced earlier to find possible causal relations
between the processes’ memory consumption (in terms of
resident set size, RSS), which are the hypothesized causes,

and the observed degradation (namely, the potential effect)
measured as available memory. We considered the top-10
processes, namely the ones with the highest RSS during the
experiment.

Tables III-V shows the cases in which a relation has been
identified for the public cloud experiments. It shows the names
and the PIDs (processes IDs) of the processes with the prob-
ability that there exists an arc (i.e., a causal relation) between
the process and the total memory consumption (πMem). The
values in the parentheses are the probabilities that there exists
a relation, but the algorithm cannot determine what is the cause
and what is the effect (i.e., it cannot assign a direction to the
edge). We highlighed as boldface text those values of πMem

for which the probability of the directed edge (between the
process RSS toward the available memory) is greater than the
probability of the undirected edge.

TABLE III: Process causal analysis for Public cloud with High
workload.

Public Cloud, High workload

Process name PID πMem

google_clock_skew_daemon 778 0.64 (+0.064)
tmux 844 0.81 (+0.032)

TABLE IV: Process causal analysis for Public cloud with
Middle workload.

Public Cloud, Middle workload

Process name PID πMem

google_network_daemon 774, 775 1.0 (+0.0)
systemd-journald 422 1.0 (+0.0)
google_osconfig_agent 651 1.0 (+0.0)

TABLE V: Process causal analysis for Public cloud with Low
workload.

Public Cloud, Low workload

Process name PID πMem

python3.7server.py 770 0.81 (+0.064)
google_accounts_daemon 1435 0.93 (+0.032)

A description of the involved processes is given in
Table VI. Several of these are pre-installed google dae-
mons of the Google Compute Engine (GCE) instance,
some of which (e.g., google_clock_skew_daemon,
google_osconfig_agent) are related to the management
of VMs. Nevertheless, systemd-journald and tmux
are not directly related to the GCE instance. Inspecting
bug repositories and issue trackers, we found conformation
that aging problems exist for all the mentioned processes.
systemd-journald and tmux have been reported to



TABLE VI: Description of the Public cloud processes appearing in the top-10 list of each experiment (Table III-V).

Public Cloud Processes

PID (Process name) Description

778 (google clock skew daemon) Daemon to keep the system clock in sync after VM start and stop.
844 (tmux) Terminal Multiplexer.
775,774 (google network daemon) Daemon to handle the network setup.
442 (systemd-journald) It is a system service that collects and stores logging data.
651 (google osconfig agent) Part of the VM Manager.
770 (python3.7server.py) Our classification system.
1435 (google accounts daemon) Daemon to setup and manage user accounts.

suffer from memory leaks/bloating1. The google daemons
have been reported to suffer from performance degradation
problems that can be related to memory increase2. Our classi-
fication system also appears in the list, which may be ignored
as a root cause because it is more related to the experiment
rather than to actual problems in the system.

Tables VII-IX report the process analysis for the private
cloud experiments. A description of the involved processes
is given in Table X. In this case, the involved processes
are, beside our classification task, the tracker-store of
Linux, which is a file indexing tool also used by Gnome
(which, in fact, appears in all the experiments). This process
seems to be the main cause of memory depletion in the
private cloud setting. Inspecting the bug repositories, we
found that tracker-store is known to have aging-related
problems, due to the constant indexing of the tracker, which
would be fixed by disabling the tracker-storage service3.
gnome processes use the tracker store service, and also have
their own memory leak problems4.

TABLE VII: Process causal analysis for Private cloud with
High workload.

Private Cloud, High workload

Process name PID πMem

python3.7server.py 1620 0.74 (+0.23)
gnome-shell 1007 0.65 (+0.23)
tracker-store 1633 0.71 (+0.23)

The causality analysis results indicate that many well-
known bugs can cause memory degradation with different
manifestation patterns in cloud environments. For the public

1Example of systemd-journald aging-related issue:
https://github.com/systemd/systemd/issues/9141.
Example of tmux aging-related issue:
https://groups.google.com/forum/#!topic/tmux-users/WiSZy6ft1As.

2Example of google_network_daemon aging-related issue:
https://github.com/GoogleCloudPlatform/compute-image-packages/
issues/603.
Example of google_osconfig_agent aging-related issue:
https://github.com/GoogleCloudPlatform/osconfig/issues/261.

3https://askubuntu.com/questions/1187191/tracker-process-taking-lot-of-
cpu.

4The issue at https://github.com/GSConnect/gnome-shell-extension-
gsconnect/issues/1028 reports that gsconnect causes gnome-shell
to lag and possibly memory leak.

TABLE VIII: Process causal analysis for Private cloud with
Middle workload.

Private Cloud, Middle workload

Process name PID πMem

gnome-initial-setup 1223 0.41 (+0.51)
update-notifier 1286 0.35 (+0.26)

TABLE IX: Process causal analysis for Private cloud with Low
workload.

Private Cloud, Low workload

Process name PID πMem

gnome-shell 926 0.54 (+0.0)
tracker-store 1685 0.26 (+0.26)
evolution-alarm-notify 1155 0.58 (+0.13)

cloud environment, the root cause of memory degradation is
mainly related to the Google daemon processes, while for the
private cloud environment it is related to the file indexing
process.

C. Comparative analysis

While we conducted the same experiments on the public
and private cloud systems, the observed memory degradation
trends and suspicious root causes look quite different. We
further statistically investigate the difference of the trends
between two cloud environments to provide an answer to RQ3.
To find differences under the same workload, we checked for
the confidence intervals (CI) of the slopes of each public and
private environments. Table XI reports the 95% confidence
intervals of the slopes identified by the Theil-Sen’s procedure.
When the slopes overlap, there is no significant difference
between the cases. As can be seen, we do not find any overlaps
between public and private cloud environments for all the
workload conditions.

In terms of trends, the public cloud case experiences trends
under all the workload settings and even under the “none”
workload case (see Table I). Trends are of the order of
1.0e+02 KB/hour. This indicates that there might be an aging
problem unrelated to the workload (which just emphasizes
more the trend). This case may be related to known memory
degradation issues from systemd-journald and tmux, or



TABLE X: Description of the Private cloud processes appearing in the top-10 list of each experiment (Table VII-IX).

Private Cloud Processes

PID (Process name) Description

1620 (python3.7server.py) Our classification system.
1007,926 (gnome-shell) It is an user interface of the Gnome desktop.
1633,1685 (tracker-store) It is a file indexing and search tool for Linux.
1223 (gnome-initial-setup) Gnome Initial Setup.
1286 (update-notifier) It scans the computer for software updates.
1155 (evolution-alarm-notify) Calendar event notifications.

TABLE XI: Confidence Interval (CI) of the available memory
trends. Underlined pairs indicate non-overlapping CIs.

Workload Public Cloud Private Cloud

High [-3.42e+02; -2.58e+02 ] [-4.87e+03; -3.97e+03]
Middle [-4.41e+02; -3.48e+02] [1.84e+03; 2.76e-03]
Low [-1.48e+02; -9.46e+01] [1.01e+03; 1.83e+03]
None [-5.13e+02; -2.64e+02] [3.11e+03; 3.89e+03]

more interestingly, it might be related to the VM processes we
highlighted in Table VI, which are specific processes of the
public cloud environment.

The private cloud case indicates a (severe) trend, of the order
of 1.0+03 KB/hour, just for the high-workload case (see Table
II). This indicates that the private setting is more sensitive
to the workload and less sensitive to other processes. The
impact of the heavy workload is mainly on the tracker-store
file indexing tool, which is used by several services in the
environment (see Table X). In short, the results reveal that
the public cloud is not workload sensitive, while the private
cloud is severely affected. It also indicates that the public cloud
might suffer from an aging issue unrelated to the workload.

VI. CONCLUSION

This paper investigated the memory degradation observed
in the private and public cloud environments deploying an
image classification system. We confirmed both cloud envi-
ronments suffer from memory degradation during 72 hours
of experiments with high workloads. Through the causality
analysis for the process’s memory consumption, we identified
the suspicious processes that are likely to be the root causes
of the memory degradation. For the public cloud system (i.e.,
Google cloud platform), the memory degradation is found to
be related to Google daemon processes. For the private cloud
system using CloudStack, we conclude that the tracker-store
file indexing process is the potential root cause. The analysis
results indicate that the processes should be looked at first
when trying to fix the software aging in memory. Although
the analysis cannot provide certainty about the aging-causing
processes, it significantly restricts the scope of the action
(e.g., if a user/developer opts for rejuvenating, s/he can focus
on a process-level rejuvenation starting from the highlighted
processes). Deeper investigations are planned in the next future
to also include further indicators in the root cause analysis

for a more precise characterization (e.g., process-level I/O
or CPU consumption, as well as caching/buffering/swapping
indicators). We also plan to setup an online degradation
detection mechanism to warn about suspicious processes and
support prompt fault tolerance/proactive recovery actions.

ACKNOWLEDGMENT

This research was partially funded by CNPq - Brazil, grant
406263/2018-3. The work was also supported in part by
the grant of University of Tsukuba Basic Research Support
Program Type S.

REFERENCES

[1] E. Andrade, F. Machida, R. Pietrantuono, and D. Cotroneo, “Software
aging in image classification systems on cloud and edge,” in 2020 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2020, pp. 342–348.

[2] J. Araujo, R. Matos, V. Alves, P. Maciel, F. Vieira de Souza, R. Matias
Jr., and K. S. Trivedi, “Software Aging in the Eucalyptus Cloud Com-
puting Infrastructure: Characterization and Rejuvenation,” ACM Journal
on Emerging Technologies in Computing Systems, vol. 10, no. 1, pp.
11:1–11:22, 2014.

[3] R. Pietrantuono and S. Russo, “A survey on software aging and rejuve-
nation in the cloud.” Software Quality Journal, vol. 28, pp. 7–38, 2020.

[4] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Aging-related bugs in
cloud computing software,” in 2012 IEEE 23rd international symposium
on software reliability engineering workshops. IEEE, 2012, pp. 287–
292.

[5] E. Andrade, B. Nogueira, R. Matos, G. Callou, and P. Maciel, “Availabil-
ity modeling and analysis of a disaster-recovery-as-a-service solution,”
Computing, pp. 1–26, 2017.

[6] H. Sukhwani, R. Matias, K. S. Trivedi, and A. Rindos, “Monitoring and
Mitigating Software Aging on IBM Cloud Controller System,” in 28th
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2017, pp. 266–272.

[7] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal
of the econometric society, pp. 245–259, 1945.

[8] P. K. Sen, “Estimates of the regression coefficient based on kendall’s
tau,” Journal of the American statistical association, vol. 63, no. 324,
pp. 1379–1389, 1968.

[9] J. Xu, X. Li, Y. Zhong, and H. Zhang, “Availability Modeling and
Analysis of a Single-Server Virtualized System with Rejuvenation,”
Journal of Software, vol. 9, no. 1, pp. 129–139, 2014.

[10] A. Rezaei and M. Sharifi, “Rejuvenating high available virtualized
systems,” in 5th International Conference on Availability, Reliability,
and Security (ARES). IEEE, 2010, pp. 289–294.

[11] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system,” in Second
International Workshop on Software Aging and Rejuvenation (WoSAR).
IEEE, 2010.

[12] ——, “Modeling and analysis of software rejuvenation in a server
virtualized system with live VM migration,” Performance Evaluation,
vol. 70, no. 3, pp. 212–230, 2013.



[13] M. Myint and T. Thein, “Availability Improvement in Virtualized Mul-
tiple Servers with Software Rejuvenation and Virtualization,” in Fourth
International Conference on Secure Software Integration and Reliability
Improvement (SSIRI). IEEE, 2010, pp. 156–162.

[14] T. Thein and J. S. Park, “Availability Analysis of Application Servers
Using Software Rejuvenation and Virtualization,” Journal of Computer
Science and Technology, vol. 24, no. 2, pp. 339–346, 2009.

[15] F. Machida, V. F. Nicola, and K. S. Trivedi, “Job completion time on a
virtualized server subject to software aging and rejuvenation,” in Third
International Workshop on Software Aging and Rejuvenation (WoSAR).
IEEE, 2011, pp. 44–49.

[16] ——, “Job Completion Time on a Virtualized Server with Software
Rejuvenation,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 10, no. 1, pp. 10:1–10:26, 2014.

[17] M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Araujo, “Availability
Study on Cloud Computing Environments: Live Migration As a Rejuve-
nation Mechanism,” in 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2013.

[18] J. Rahme and H. Xu, “A Software Reliability Model for Cloud-
Based Software Rejuvenation Using Dynamic Fault Trees,” International
Journal of Software Engineering and Knowledge Engineering, vol. 25,
no. 09n10, pp. 1491–1513, 2015.

[19] D. Cotroneo, A. K. Iannillo, R. Natella, and R. Pietrantuono, “A
comprehensive study on software aging across android versions and
vendors,” Empirical Software Engineering, vol. 25, no. 5, pp. 3357–
3395, 2020.

[20] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, “J2ee instrumentation
for software aging root cause application component determination
with aspectj,” in 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW). IEEE,
2010, pp. 1–8.

[21] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[22] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,
2017.

[23] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation
and availability assurance techniques,” International Journal of System
Assurance Engineering and Management, vol. 1, no. 4, pp. 340–350,
2010.

[24] J. M. Ogarrio, P. Spirtes, and J. Ramsey, “A hybrid causal search
algorithm for latent variable models,” in Proceedings of the Eighth Inter-
national Conference on Probabilistic Graphical Models, A. Antonucci,
G. Corani, and C. P. Campos, Eds., 2016, pp. 368–379.

[25] D. M. Chickering, “Optimal structure identification with greedy search,”
J. Mach. Learn. Res., vol. 3, no. null, p. 507–554, Mar. 2003. [Online].
Available: https://doi.org/10.1162/153244303321897717

[26] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and
Search, 2nd Edition, ser. MIT Press Books. The MIT Press, December
2001, vol. 1, no. 0262194406.

[27] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery
methods based on graphical models,” Frontiers in Genetics, vol. 10,
p. 524, 2019. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fgene.2019.00524


